Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem4 Structured version   Visualization version   GIF version

Theorem smflimlem4 42918
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem4.1 (𝜑𝑀 ∈ ℤ)
smflimlem4.2 𝑍 = (ℤ𝑀)
smflimlem4.3 (𝜑𝑆 ∈ SAlg)
smflimlem4.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem4.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem4.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem4.7 (𝜑𝐴 ∈ ℝ)
smflimlem4.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem4.9 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem4.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem4.11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem4 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠   𝑥,𝐴,𝑘,𝑚   𝐶,𝑘,𝑚,𝑠   𝐶,𝑟,𝑘   𝐷,𝑘,𝑚,𝑛,𝑥   𝐷,𝑟,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑚,𝐺   𝑘,𝐻,𝑚,𝑛   𝑘,𝐼,𝑚,𝑥   𝐼,𝑟   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑃,𝑟   𝑆,𝑘,𝑚,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑛,𝑟)   𝐶(𝑥,𝑛)   𝐷(𝑠)   𝑃(𝑥,𝑛)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑟)   𝐺(𝑥,𝑘,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑠,𝑟)   𝐼(𝑛,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem4
Dummy variables 𝑖 𝑗 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4208 . . 3 (𝐷𝐼) ⊆ 𝐷
21a1i 11 . 2 (𝜑 → (𝐷𝐼) ⊆ 𝐷)
32sselda 3970 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝑥𝐷)
4 smflimlem4.6 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
6 nfv 1908 . . . . . . . . . . 11 𝑚(𝜑𝑥𝐷)
7 nfcv 2981 . . . . . . . . . . 11 𝑚𝐹
8 nfcv 2981 . . . . . . . . . . 11 𝑧𝐹
9 smflimlem4.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 smflimlem4.3 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1110adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
12 smflimlem4.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1312ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
14 eqid 2825 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
1511, 13, 14smff 42877 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1615adantlr 711 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
17 smflimlem4.5 . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
18 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1918mpteq2dv 5158 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2019eleq1d 2901 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ ))
2120cbvrabv 3496 . . . . . . . . . . . 12 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
2217, 21eqtri 2848 . . . . . . . . . . 11 𝐷 = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
23 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝑥𝐷)
246, 7, 8, 9, 16, 22, 23fnlimfvre 41822 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
2524elexd 3519 . . . . . . . . 9 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ V)
265, 25fvmpt2d 6776 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2726, 24eqeltrd 2917 . . . . . . 7 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
283, 27syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℝ)
2928adantr 481 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ∈ ℝ)
30 smflimlem4.7 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3130adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℝ)
32 rpre 12390 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3332adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
3431, 33readdcld 10662 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
3534adantlr 711 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
36 nfv 1908 . . . . . . . 8 𝑚((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
37 rphalfcl 12409 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
38 rpgtrecnn 41516 . . . . . . . . . . 11 ((𝑦 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
3937, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4039adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4110ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑆 ∈ SAlg)
4213adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4342ad5ant15 755 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4430adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝐴 ∈ ℝ)
4544ad3antrrr 726 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝐴 ∈ ℝ)
46 smflimlem4.8 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
47 nfcv 2981 . . . . . . . . . . . . 13 𝑘𝑍
48 nfcv 2981 . . . . . . . . . . . . 13 𝑗𝑍
49 nfcv 2981 . . . . . . . . . . . . 13 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
50 nfcv 2981 . . . . . . . . . . . . 13 𝑘{𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))}
5118breq1d 5072 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))))
5251cbvrabv 3496 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))}
5352a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))})
54 oveq2 7159 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
5554oveq2d 7167 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝑗)))
5655breq2d 5074 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))))
5756rabbidv 3485 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5853, 57eqtrd 2860 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5958eqeq1d 2827 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
6059rabbidv 3485 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6147, 48, 49, 50, 60cbvmpo2 41230 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6246, 61eqtri 2848 . . . . . . . . . . 11 𝑃 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
63 smflimlem4.9 . . . . . . . . . . . 12 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
64 nfcv 2981 . . . . . . . . . . . . 13 𝑗(𝐶‘(𝑚𝑃𝑘))
65 nfcv 2981 . . . . . . . . . . . . 13 𝑘(𝐶‘(𝑚𝑃𝑗))
66 oveq2 7159 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑚𝑃𝑘) = (𝑚𝑃𝑗))
6766fveq2d 6670 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑚𝑃𝑗)))
6847, 48, 64, 65, 67cbvmpo2 41230 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
6963, 68eqtri 2848 . . . . . . . . . . 11 𝐻 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
70 smflimlem4.10 . . . . . . . . . . . 12 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
71 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 = 𝑗)
7271oveq2d 7167 . . . . . . . . . . . . . . 15 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) = (𝑚𝐻𝑗))
7372iineq2dv 4940 . . . . . . . . . . . . . 14 ((𝑘 = 𝑗𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7473iuneq2dv 4939 . . . . . . . . . . . . 13 (𝑘 = 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7574cbviinv 4962 . . . . . . . . . . . 12 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
7670, 75eqtri 2848 . . . . . . . . . . 11 𝐼 = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
77 smflimlem4.11 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7877adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7978ad5ant15 755 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
80 simp-4r 780 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑥 ∈ (𝐷𝐼))
81 simplr 765 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑘 ∈ ℕ)
8237ad3antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (𝑦 / 2) ∈ ℝ+)
83 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (1 / 𝑘) < (𝑦 / 2))
849, 41, 43, 22, 45, 62, 69, 76, 79, 80, 81, 82, 83smflimlem3 42917 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
8584rexlimdva2 3291 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)))))
8640, 85mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
87 nfv 1908 . . . . . . . . . 10 𝑖((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
88 nfcv 2981 . . . . . . . . . 10 𝑖𝐹
89 nfcv 2981 . . . . . . . . . 10 𝑥𝐹
90 smflimlem4.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
9190ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
92 eleq1w 2899 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
9392anbi2d 628 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
94 fveq2 6666 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
9594dmeqd 5772 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
9694, 95feq12d 6498 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
9793, 96imbi12d 346 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
9897, 15chvarv 2410 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
9998ad4ant14 748 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
100 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
101100dmeqd 5772 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
102101cbviinv 4962 . . . . . . . . . . . . . . 15 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
104103iuneq2i 4936 . . . . . . . . . . . . 13 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
105 fveq2 6666 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
106105iineq1d 41223 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙))
107 fveq2 6666 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
108107dmeqd 5772 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → dom (𝐹𝑙) = dom (𝐹𝑖))
109108cbviinv 4962 . . . . . . . . . . . . . . . 16 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
110109a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
111106, 110eqtrd 2860 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
112111cbviunv 4961 . . . . . . . . . . . . 13 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
113104, 112eqtri 2848 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
114113rabeqi 3487 . . . . . . . . . . 11 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
115 fveq2 6666 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
116115fveq1d 6668 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
117116cbvmptv 5165 . . . . . . . . . . . . . 14 (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
118117eqcomi 2834 . . . . . . . . . . . . 13 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))
119118eleq1i 2907 . . . . . . . . . . . 12 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ )
120119rabbii 3478 . . . . . . . . . . 11 {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
12117, 114, 1203eqtri 2852 . . . . . . . . . 10 𝐷 = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
122118fveq2i 6669 . . . . . . . . . . . 12 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)))
123122mpteq2i 5154 . . . . . . . . . . 11 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1244, 123eqtri 2848 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1253adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑥𝐷)
12637adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
12787, 88, 89, 91, 9, 99, 121, 124, 125, 126fnlimabslt 41827 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)))
12829adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
129 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
130128, 129resubcld 11060 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
131130adantrr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
132130recnd 10661 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℂ)
133132abscld 14789 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
134133adantrr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
13532rehalfcld 11876 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
136135ad2antlr 723 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝑦 / 2) ∈ ℝ)
137131leabsd 14767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ≤ (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))))
13828recnd 10661 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℂ)
139138adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
140 recn 10619 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹𝑖)‘𝑥) ∈ ℝ → ((𝐹𝑖)‘𝑥) ∈ ℂ)
141140adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℂ)
142139, 141abssubd 14806 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
143142adantrr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
144 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))
145143, 144eqbrtrd 5084 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
146145adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
147131, 134, 136, 137, 146lelttrd 10790 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2))
14829adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) ∈ ℝ)
149 simprl 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
150148, 149, 136ltsubadd2d 11230 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2) ↔ (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
151147, 150mpbid 233 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
152151ex 413 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
153152ad2antrr 722 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
154153ralimdva 3181 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
155154ex 413 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))))
15636, 155reximdai 3315 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
157127, 156mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
158115dmeqd 5772 . . . . . . . . . 10 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
159158eleq2d 2902 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑥 ∈ dom (𝐹𝑖) ↔ 𝑥 ∈ dom (𝐹𝑚)))
160116breq1d 5072 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)) ↔ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
161159, 160anbi12d 630 . . . . . . . 8 (𝑖 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))))
162116oveq1d 7166 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) = (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
163162breq2d 5074 . . . . . . . 8 (𝑖 = 𝑚 → ((𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) ↔ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
16436, 9, 86, 157, 161, 163rexanuz3 41229 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
165 df-3an 1083 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
166 3ancomb 1093 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
167165, 166bitr3i 278 . . . . . . . 8 (((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
168167rexbii 3251 . . . . . . 7 (∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
169164, 168sylib 219 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
17029ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) ∈ ℝ)
171153adant3 1126 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
172 simp3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
173171, 172ffvelrnd 6847 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
174173ad4ant134 1168 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
175 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → 𝑦 ∈ ℝ+)
176175, 135syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (𝑦 / 2) ∈ ℝ)
177174, 176readdcld 10662 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
178177adantl3r 746 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
1791783ad2antr1 1182 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
180 rehalfcl 11855 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 / 2) ∈ ℝ)
18133, 180syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
18231, 181jca 512 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ))
183 readdcl 10612 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
184182, 183syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
185184, 181readdcld 10662 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
186185ad5ant13 753 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
187 simpr2 1189 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
188174adantrr 713 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
189184ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
190176adantrr 713 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝑦 / 2) ∈ ℝ)
191 simprr 769 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))
192188, 189, 190, 191ltadd1dd 11243 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
193192adantl3r 746 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
1941933adantr2 1164 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
195170, 179, 186, 187, 194lttrd 10793 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
19631recnd 10661 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℂ)
197181recnd 10661 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
198196, 197, 197addassd 10655 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + ((𝑦 / 2) + (𝑦 / 2))))
19932recnd 10661 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
200 2halves 11857 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
201199, 200syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
202201oveq2d 7167 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
203202adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
204198, 203eqtrd 2860 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
205204ad5ant13 753 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
206195, 205breqtrd 5088 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (𝐴 + 𝑦))
207206rexlimdva2 3291 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦)))
208169, 207mpd 15 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) < (𝐴 + 𝑦))
20929, 35, 208ltled 10780 . . . 4 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ≤ (𝐴 + 𝑦))
210209ralrimiva 3186 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦))
211 alrple 12592 . . . 4 (((𝐺𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
21228, 44, 211syl2anc 584 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
213210, 212mpbird 258 . 2 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ≤ 𝐴)
2142, 213ssrabdv 4053 1 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  wrex 3143  {crab 3146  Vcvv 3499  cin 3938  wss 3939   ciun 4916   ciin 4917   class class class wbr 5062  cmpt 5142  dom cdm 5553  ran crn 5554  wf 6347  cfv 6351  (class class class)co 7151  cmpo 7153  cc 10527  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  cz 11973  cuz 12235  +crp 12382  abscabs 14586  cli 14834  SAlgcsalg 42461  SMblFncsmblfn 42845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-ioo 12735  df-ico 12737  df-fl 13155  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-smblfn 42846
This theorem is referenced by:  smflimlem5  42919
  Copyright terms: Public domain W3C validator