Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem4 Structured version   Visualization version   GIF version

Theorem smflimlem4 46811
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem4.1 (𝜑𝑀 ∈ ℤ)
smflimlem4.2 𝑍 = (ℤ𝑀)
smflimlem4.3 (𝜑𝑆 ∈ SAlg)
smflimlem4.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem4.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem4.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem4.7 (𝜑𝐴 ∈ ℝ)
smflimlem4.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem4.9 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem4.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem4.11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem4 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠   𝑥,𝐴,𝑘,𝑚   𝐶,𝑘,𝑚,𝑠   𝐶,𝑟,𝑘   𝐷,𝑘,𝑚,𝑛,𝑥   𝐷,𝑟,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑚,𝐺   𝑘,𝐻,𝑚,𝑛   𝑘,𝐼,𝑚,𝑥   𝐼,𝑟   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑃,𝑟   𝑆,𝑘,𝑚,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑛,𝑟)   𝐶(𝑥,𝑛)   𝐷(𝑠)   𝑃(𝑥,𝑛)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑟)   𝐺(𝑥,𝑘,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑠,𝑟)   𝐼(𝑛,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem4
Dummy variables 𝑖 𝑗 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4187 . . 3 (𝐷𝐼) ⊆ 𝐷
21a1i 11 . 2 (𝜑 → (𝐷𝐼) ⊆ 𝐷)
32sselda 3934 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝑥𝐷)
4 smflimlem4.6 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
6 nfv 1915 . . . . . . . . . . 11 𝑚(𝜑𝑥𝐷)
7 nfcv 2894 . . . . . . . . . . 11 𝑚𝐹
8 nfcv 2894 . . . . . . . . . . 11 𝑧𝐹
9 smflimlem4.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 smflimlem4.3 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
12 smflimlem4.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1312ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
14 eqid 2731 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
1511, 13, 14smff 46769 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1615adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
17 smflimlem4.5 . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
18 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1918mpteq2dv 5185 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2019eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ ))
2120cbvrabv 3405 . . . . . . . . . . . 12 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
2217, 21eqtri 2754 . . . . . . . . . . 11 𝐷 = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
23 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝑥𝐷)
246, 7, 8, 9, 16, 22, 23fnlimfvre 45711 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
2524elexd 3460 . . . . . . . . 9 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ V)
265, 25fvmpt2d 6942 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2726, 24eqeltrd 2831 . . . . . . 7 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
283, 27syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℝ)
2928adantr 480 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ∈ ℝ)
30 smflimlem4.7 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3130adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℝ)
32 rpre 12896 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3332adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
3431, 33readdcld 11138 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
3534adantlr 715 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
36 nfv 1915 . . . . . . . 8 𝑚((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
37 rphalfcl 12916 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
38 rpgtrecnn 45417 . . . . . . . . . . 11 ((𝑦 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
3937, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4039adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4110ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑆 ∈ SAlg)
4213adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4342ad5ant15 758 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4430adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝐴 ∈ ℝ)
4544ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝐴 ∈ ℝ)
46 smflimlem4.8 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
47 nfcv 2894 . . . . . . . . . . . . 13 𝑘𝑍
48 nfcv 2894 . . . . . . . . . . . . 13 𝑗𝑍
49 nfcv 2894 . . . . . . . . . . . . 13 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
50 nfcv 2894 . . . . . . . . . . . . 13 𝑘{𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))}
5118breq1d 5101 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))))
5251cbvrabv 3405 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))}
5352a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))})
54 oveq2 7354 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
5554oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝑗)))
5655breq2d 5103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))))
5756rabbidv 3402 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5853, 57eqtrd 2766 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5958eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
6059rabbidv 3402 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6147, 48, 49, 50, 60cbvmpo2 45133 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6246, 61eqtri 2754 . . . . . . . . . . 11 𝑃 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
63 smflimlem4.9 . . . . . . . . . . . 12 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
64 nfcv 2894 . . . . . . . . . . . . 13 𝑗(𝐶‘(𝑚𝑃𝑘))
65 nfcv 2894 . . . . . . . . . . . . 13 𝑘(𝐶‘(𝑚𝑃𝑗))
66 oveq2 7354 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑚𝑃𝑘) = (𝑚𝑃𝑗))
6766fveq2d 6826 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑚𝑃𝑗)))
6847, 48, 64, 65, 67cbvmpo2 45133 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
6963, 68eqtri 2754 . . . . . . . . . . 11 𝐻 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
70 smflimlem4.10 . . . . . . . . . . . 12 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
71 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 = 𝑗)
7271oveq2d 7362 . . . . . . . . . . . . . . 15 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) = (𝑚𝐻𝑗))
7372iineq2dv 4967 . . . . . . . . . . . . . 14 ((𝑘 = 𝑗𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7473iuneq2dv 4966 . . . . . . . . . . . . 13 (𝑘 = 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7574cbviinv 4990 . . . . . . . . . . . 12 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
7670, 75eqtri 2754 . . . . . . . . . . 11 𝐼 = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
77 smflimlem4.11 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7877adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7978ad5ant15 758 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
80 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑥 ∈ (𝐷𝐼))
81 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑘 ∈ ℕ)
8237ad3antlr 731 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (𝑦 / 2) ∈ ℝ+)
83 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (1 / 𝑘) < (𝑦 / 2))
849, 41, 43, 22, 45, 62, 69, 76, 79, 80, 81, 82, 83smflimlem3 46810 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
8584rexlimdva2 3135 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)))))
8640, 85mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
87 nfv 1915 . . . . . . . . . 10 𝑖((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
88 nfcv 2894 . . . . . . . . . 10 𝑖𝐹
89 nfcv 2894 . . . . . . . . . 10 𝑥𝐹
90 smflimlem4.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
9190ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
92 eleq1w 2814 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
9392anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
94 fveq2 6822 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
9594dmeqd 5845 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
9694, 95feq12d 6639 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
9793, 96imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
9897, 15chvarvv 1990 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
9998ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
100 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
101100dmeqd 5845 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
102101cbviinv 4990 . . . . . . . . . . . . . . 15 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
104103iuneq2i 4963 . . . . . . . . . . . . 13 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
105 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
106105iineq1d 45126 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙))
107 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
108107dmeqd 5845 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → dom (𝐹𝑙) = dom (𝐹𝑖))
109108cbviinv 4990 . . . . . . . . . . . . . . . 16 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
110109a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
111106, 110eqtrd 2766 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
112111cbviunv 4989 . . . . . . . . . . . . 13 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
113104, 112eqtri 2754 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
114113rabeqi 3408 . . . . . . . . . . 11 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
115 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
116115fveq1d 6824 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
117116cbvmptv 5195 . . . . . . . . . . . . . 14 (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
118117eqcomi 2740 . . . . . . . . . . . . 13 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))
119118eleq1i 2822 . . . . . . . . . . . 12 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ )
120119rabbii 3400 . . . . . . . . . . 11 {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
12117, 114, 1203eqtri 2758 . . . . . . . . . 10 𝐷 = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
122118fveq2i 6825 . . . . . . . . . . . 12 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)))
123122mpteq2i 5187 . . . . . . . . . . 11 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1244, 123eqtri 2754 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1253adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑥𝐷)
12637adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
12787, 88, 89, 91, 9, 99, 121, 124, 125, 126fnlimabslt 45716 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)))
12829adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
129 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
130128, 129resubcld 11542 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
131130adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
132130recnd 11137 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℂ)
133132abscld 15343 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
134133adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
13532rehalfcld 12365 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
136135ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝑦 / 2) ∈ ℝ)
137131leabsd 15319 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ≤ (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))))
13828recnd 11137 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℂ)
139138adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
140 recn 11093 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹𝑖)‘𝑥) ∈ ℝ → ((𝐹𝑖)‘𝑥) ∈ ℂ)
141140adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℂ)
142139, 141abssubd 15360 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
143142adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
144 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))
145143, 144eqbrtrd 5113 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
146145adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
147131, 134, 136, 137, 146lelttrd 11268 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2))
14829adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) ∈ ℝ)
149 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
150148, 149, 136ltsubadd2d 11712 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2) ↔ (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
151147, 150mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
152151ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
153152ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
154153ralimdva 3144 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
155154ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))))
15636, 155reximdai 3234 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
157127, 156mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
158115dmeqd 5845 . . . . . . . . . 10 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
159158eleq2d 2817 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑥 ∈ dom (𝐹𝑖) ↔ 𝑥 ∈ dom (𝐹𝑚)))
160116breq1d 5101 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)) ↔ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
161159, 160anbi12d 632 . . . . . . . 8 (𝑖 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))))
162116oveq1d 7361 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) = (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
163162breq2d 5103 . . . . . . . 8 (𝑖 = 𝑚 → ((𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) ↔ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
16436, 9, 86, 157, 161, 163rexanuz3 45132 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
165 df-3an 1088 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
166 3ancomb 1098 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
167165, 166bitr3i 277 . . . . . . . 8 (((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
168167rexbii 3079 . . . . . . 7 (∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
169164, 168sylib 218 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
17029ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) ∈ ℝ)
171153adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
172 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
173171, 172ffvelcdmd 7018 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
174173ad4ant134 1175 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
175 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → 𝑦 ∈ ℝ+)
176175, 135syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (𝑦 / 2) ∈ ℝ)
177174, 176readdcld 11138 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
178177adantl3r 750 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
1791783ad2antr1 1189 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
180 rehalfcl 12345 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 / 2) ∈ ℝ)
18133, 180syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
18231, 181jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ))
183 readdcl 11086 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
184182, 183syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
185184, 181readdcld 11138 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
186185ad5ant13 756 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
187 simpr2 1196 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
188174adantrr 717 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
189184ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
190176adantrr 717 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝑦 / 2) ∈ ℝ)
191 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))
192188, 189, 190, 191ltadd1dd 11725 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
193192adantl3r 750 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
1941933adantr2 1171 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
195170, 179, 186, 187, 194lttrd 11271 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
19631recnd 11137 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℂ)
197181recnd 11137 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
198196, 197, 197addassd 11131 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + ((𝑦 / 2) + (𝑦 / 2))))
19932recnd 11137 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
200 2halves 12336 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
201199, 200syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
202201oveq2d 7362 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
203202adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
204198, 203eqtrd 2766 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
205204ad5ant13 756 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
206195, 205breqtrd 5117 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (𝐴 + 𝑦))
207206rexlimdva2 3135 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦)))
208169, 207mpd 15 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) < (𝐴 + 𝑦))
20929, 35, 208ltled 11258 . . . 4 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ≤ (𝐴 + 𝑦))
210209ralrimiva 3124 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦))
211 alrple 13102 . . . 4 (((𝐺𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
21228, 44, 211syl2anc 584 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
213210, 212mpbird 257 . 2 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ≤ 𝐴)
2142, 213ssrabdv 4024 1 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3901  wss 3902   ciun 4941   ciin 4942   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11001  cr 11002  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  cz 12465  cuz 12729  +crp 12887  abscabs 15138  cli 15388  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-fl 13693  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-smblfn 46733
This theorem is referenced by:  smflimlem5  46812
  Copyright terms: Public domain W3C validator