Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem4 Structured version   Visualization version   GIF version

Theorem smflimlem4 44309
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem4.1 (𝜑𝑀 ∈ ℤ)
smflimlem4.2 𝑍 = (ℤ𝑀)
smflimlem4.3 (𝜑𝑆 ∈ SAlg)
smflimlem4.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem4.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem4.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem4.7 (𝜑𝐴 ∈ ℝ)
smflimlem4.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem4.9 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem4.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem4.11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem4 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠   𝑥,𝐴,𝑘,𝑚   𝐶,𝑘,𝑚,𝑠   𝐶,𝑟,𝑘   𝐷,𝑘,𝑚,𝑛,𝑥   𝐷,𝑟,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑚,𝐺   𝑘,𝐻,𝑚,𝑛   𝑘,𝐼,𝑚,𝑥   𝐼,𝑟   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑃,𝑟   𝑆,𝑘,𝑚,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑛,𝑟)   𝐶(𝑥,𝑛)   𝐷(𝑠)   𝑃(𝑥,𝑛)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑟)   𝐺(𝑥,𝑘,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑠,𝑟)   𝐼(𝑛,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem4
Dummy variables 𝑖 𝑗 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4162 . . 3 (𝐷𝐼) ⊆ 𝐷
21a1i 11 . 2 (𝜑 → (𝐷𝐼) ⊆ 𝐷)
32sselda 3921 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝑥𝐷)
4 smflimlem4.6 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
6 nfv 1917 . . . . . . . . . . 11 𝑚(𝜑𝑥𝐷)
7 nfcv 2907 . . . . . . . . . . 11 𝑚𝐹
8 nfcv 2907 . . . . . . . . . . 11 𝑧𝐹
9 smflimlem4.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 smflimlem4.3 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1110adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
12 smflimlem4.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1312ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
14 eqid 2738 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
1511, 13, 14smff 44268 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1615adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
17 smflimlem4.5 . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
18 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1918mpteq2dv 5176 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2019eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ ))
2120cbvrabv 3426 . . . . . . . . . . . 12 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
2217, 21eqtri 2766 . . . . . . . . . . 11 𝐷 = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
23 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝑥𝐷)
246, 7, 8, 9, 16, 22, 23fnlimfvre 43215 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
2524elexd 3452 . . . . . . . . 9 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ V)
265, 25fvmpt2d 6888 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2726, 24eqeltrd 2839 . . . . . . 7 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
283, 27syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℝ)
2928adantr 481 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ∈ ℝ)
30 smflimlem4.7 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3130adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℝ)
32 rpre 12738 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3332adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
3431, 33readdcld 11004 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
3534adantlr 712 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
36 nfv 1917 . . . . . . . 8 𝑚((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
37 rphalfcl 12757 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
38 rpgtrecnn 42919 . . . . . . . . . . 11 ((𝑦 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
3937, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4039adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4110ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑆 ∈ SAlg)
4213adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4342ad5ant15 756 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4430adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝐴 ∈ ℝ)
4544ad3antrrr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝐴 ∈ ℝ)
46 smflimlem4.8 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
47 nfcv 2907 . . . . . . . . . . . . 13 𝑘𝑍
48 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑍
49 nfcv 2907 . . . . . . . . . . . . 13 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
50 nfcv 2907 . . . . . . . . . . . . 13 𝑘{𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))}
5118breq1d 5084 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))))
5251cbvrabv 3426 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))}
5352a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))})
54 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
5554oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝑗)))
5655breq2d 5086 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))))
5756rabbidv 3414 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5853, 57eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5958eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
6059rabbidv 3414 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6147, 48, 49, 50, 60cbvmpo2 42647 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6246, 61eqtri 2766 . . . . . . . . . . 11 𝑃 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
63 smflimlem4.9 . . . . . . . . . . . 12 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
64 nfcv 2907 . . . . . . . . . . . . 13 𝑗(𝐶‘(𝑚𝑃𝑘))
65 nfcv 2907 . . . . . . . . . . . . 13 𝑘(𝐶‘(𝑚𝑃𝑗))
66 oveq2 7283 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑚𝑃𝑘) = (𝑚𝑃𝑗))
6766fveq2d 6778 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑚𝑃𝑗)))
6847, 48, 64, 65, 67cbvmpo2 42647 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
6963, 68eqtri 2766 . . . . . . . . . . 11 𝐻 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
70 smflimlem4.10 . . . . . . . . . . . 12 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
71 simpll 764 . . . . . . . . . . . . . . . 16 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 = 𝑗)
7271oveq2d 7291 . . . . . . . . . . . . . . 15 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) = (𝑚𝐻𝑗))
7372iineq2dv 4949 . . . . . . . . . . . . . 14 ((𝑘 = 𝑗𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7473iuneq2dv 4948 . . . . . . . . . . . . 13 (𝑘 = 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7574cbviinv 4971 . . . . . . . . . . . 12 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
7670, 75eqtri 2766 . . . . . . . . . . 11 𝐼 = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
77 smflimlem4.11 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7877adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7978ad5ant15 756 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
80 simp-4r 781 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑥 ∈ (𝐷𝐼))
81 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑘 ∈ ℕ)
8237ad3antlr 728 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (𝑦 / 2) ∈ ℝ+)
83 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (1 / 𝑘) < (𝑦 / 2))
849, 41, 43, 22, 45, 62, 69, 76, 79, 80, 81, 82, 83smflimlem3 44308 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
8584rexlimdva2 3216 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)))))
8640, 85mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
87 nfv 1917 . . . . . . . . . 10 𝑖((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
88 nfcv 2907 . . . . . . . . . 10 𝑖𝐹
89 nfcv 2907 . . . . . . . . . 10 𝑥𝐹
90 smflimlem4.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
9190ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
92 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
9392anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
94 fveq2 6774 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
9594dmeqd 5814 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
9694, 95feq12d 6588 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
9793, 96imbi12d 345 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
9897, 15chvarvv 2002 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
9998ad4ant14 749 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
100 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
101100dmeqd 5814 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
102101cbviinv 4971 . . . . . . . . . . . . . . 15 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
104103iuneq2i 4945 . . . . . . . . . . . . 13 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
105 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
106105iineq1d 42640 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙))
107 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
108107dmeqd 5814 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → dom (𝐹𝑙) = dom (𝐹𝑖))
109108cbviinv 4971 . . . . . . . . . . . . . . . 16 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
110109a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
111106, 110eqtrd 2778 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
112111cbviunv 4970 . . . . . . . . . . . . 13 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
113104, 112eqtri 2766 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
114113rabeqi 3416 . . . . . . . . . . 11 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
115 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
116115fveq1d 6776 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
117116cbvmptv 5187 . . . . . . . . . . . . . 14 (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
118117eqcomi 2747 . . . . . . . . . . . . 13 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))
119118eleq1i 2829 . . . . . . . . . . . 12 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ )
120119rabbii 3408 . . . . . . . . . . 11 {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
12117, 114, 1203eqtri 2770 . . . . . . . . . 10 𝐷 = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
122118fveq2i 6777 . . . . . . . . . . . 12 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)))
123122mpteq2i 5179 . . . . . . . . . . 11 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1244, 123eqtri 2766 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1253adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑥𝐷)
12637adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
12787, 88, 89, 91, 9, 99, 121, 124, 125, 126fnlimabslt 43220 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)))
12829adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
129 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
130128, 129resubcld 11403 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
131130adantrr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
132130recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℂ)
133132abscld 15148 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
134133adantrr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
13532rehalfcld 12220 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
136135ad2antlr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝑦 / 2) ∈ ℝ)
137131leabsd 15126 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ≤ (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))))
13828recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℂ)
139138adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
140 recn 10961 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹𝑖)‘𝑥) ∈ ℝ → ((𝐹𝑖)‘𝑥) ∈ ℂ)
141140adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℂ)
142139, 141abssubd 15165 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
143142adantrr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
144 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))
145143, 144eqbrtrd 5096 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
146145adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
147131, 134, 136, 137, 146lelttrd 11133 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2))
14829adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) ∈ ℝ)
149 simprl 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
150148, 149, 136ltsubadd2d 11573 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2) ↔ (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
151147, 150mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
152151ex 413 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
153152ad2antrr 723 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
154153ralimdva 3108 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
155154ex 413 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))))
15636, 155reximdai 3244 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
157127, 156mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
158115dmeqd 5814 . . . . . . . . . 10 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
159158eleq2d 2824 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑥 ∈ dom (𝐹𝑖) ↔ 𝑥 ∈ dom (𝐹𝑚)))
160116breq1d 5084 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)) ↔ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
161159, 160anbi12d 631 . . . . . . . 8 (𝑖 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))))
162116oveq1d 7290 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) = (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
163162breq2d 5086 . . . . . . . 8 (𝑖 = 𝑚 → ((𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) ↔ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
16436, 9, 86, 157, 161, 163rexanuz3 42646 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
165 df-3an 1088 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
166 3ancomb 1098 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
167165, 166bitr3i 276 . . . . . . . 8 (((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
168167rexbii 3181 . . . . . . 7 (∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
169164, 168sylib 217 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
17029ad2antrr 723 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) ∈ ℝ)
171153adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
172 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
173171, 172ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
174173ad4ant134 1173 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
175 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → 𝑦 ∈ ℝ+)
176175, 135syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (𝑦 / 2) ∈ ℝ)
177174, 176readdcld 11004 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
178177adantl3r 747 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
1791783ad2antr1 1187 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
180 rehalfcl 12199 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 / 2) ∈ ℝ)
18133, 180syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
18231, 181jca 512 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ))
183 readdcl 10954 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
184182, 183syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
185184, 181readdcld 11004 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
186185ad5ant13 754 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
187 simpr2 1194 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
188174adantrr 714 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
189184ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
190176adantrr 714 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝑦 / 2) ∈ ℝ)
191 simprr 770 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))
192188, 189, 190, 191ltadd1dd 11586 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
193192adantl3r 747 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
1941933adantr2 1169 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
195170, 179, 186, 187, 194lttrd 11136 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
19631recnd 11003 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℂ)
197181recnd 11003 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
198196, 197, 197addassd 10997 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + ((𝑦 / 2) + (𝑦 / 2))))
19932recnd 11003 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
200 2halves 12201 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
201199, 200syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
202201oveq2d 7291 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
203202adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
204198, 203eqtrd 2778 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
205204ad5ant13 754 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
206195, 205breqtrd 5100 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (𝐴 + 𝑦))
207206rexlimdva2 3216 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦)))
208169, 207mpd 15 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) < (𝐴 + 𝑦))
20929, 35, 208ltled 11123 . . . 4 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ≤ (𝐴 + 𝑦))
210209ralrimiva 3103 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦))
211 alrple 12940 . . . 4 (((𝐺𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
21228, 44, 211syl2anc 584 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
213210, 212mpbird 256 . 2 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ≤ 𝐴)
2142, 213ssrabdv 4007 1 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887   ciun 4924   ciin 4925   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cuz 12582  +crp 12730  abscabs 14945  cli 15193  SAlgcsalg 43849  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-smblfn 44234
This theorem is referenced by:  smflimlem5  44310
  Copyright terms: Public domain W3C validator