Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem4 Structured version   Visualization version   GIF version

Theorem smflimlem4 46730
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem4.1 (𝜑𝑀 ∈ ℤ)
smflimlem4.2 𝑍 = (ℤ𝑀)
smflimlem4.3 (𝜑𝑆 ∈ SAlg)
smflimlem4.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem4.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem4.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem4.7 (𝜑𝐴 ∈ ℝ)
smflimlem4.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem4.9 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem4.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem4.11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem4 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠   𝑥,𝐴,𝑘,𝑚   𝐶,𝑘,𝑚,𝑠   𝐶,𝑟,𝑘   𝐷,𝑘,𝑚,𝑛,𝑥   𝐷,𝑟,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑚,𝐺   𝑘,𝐻,𝑚,𝑛   𝑘,𝐼,𝑚,𝑥   𝐼,𝑟   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑃,𝑟   𝑆,𝑘,𝑚,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑛,𝑟)   𝐶(𝑥,𝑛)   𝐷(𝑠)   𝑃(𝑥,𝑛)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑟)   𝐺(𝑥,𝑘,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑠,𝑟)   𝐼(𝑛,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem4
Dummy variables 𝑖 𝑗 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4245 . . 3 (𝐷𝐼) ⊆ 𝐷
21a1i 11 . 2 (𝜑 → (𝐷𝐼) ⊆ 𝐷)
32sselda 3995 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝑥𝐷)
4 smflimlem4.6 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
6 nfv 1912 . . . . . . . . . . 11 𝑚(𝜑𝑥𝐷)
7 nfcv 2903 . . . . . . . . . . 11 𝑚𝐹
8 nfcv 2903 . . . . . . . . . . 11 𝑧𝐹
9 smflimlem4.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 smflimlem4.3 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
12 smflimlem4.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1312ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
14 eqid 2735 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
1511, 13, 14smff 46688 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1615adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
17 smflimlem4.5 . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
18 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1918mpteq2dv 5250 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2019eleq1d 2824 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ ))
2120cbvrabv 3444 . . . . . . . . . . . 12 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
2217, 21eqtri 2763 . . . . . . . . . . 11 𝐷 = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
23 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝑥𝐷)
246, 7, 8, 9, 16, 22, 23fnlimfvre 45630 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
2524elexd 3502 . . . . . . . . 9 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ V)
265, 25fvmpt2d 7029 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2726, 24eqeltrd 2839 . . . . . . 7 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
283, 27syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℝ)
2928adantr 480 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ∈ ℝ)
30 smflimlem4.7 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3130adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℝ)
32 rpre 13041 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3332adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
3431, 33readdcld 11288 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
3534adantlr 715 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
36 nfv 1912 . . . . . . . 8 𝑚((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
37 rphalfcl 13060 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
38 rpgtrecnn 45330 . . . . . . . . . . 11 ((𝑦 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
3937, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4039adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4110ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑆 ∈ SAlg)
4213adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4342ad5ant15 759 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4430adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝐴 ∈ ℝ)
4544ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝐴 ∈ ℝ)
46 smflimlem4.8 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
47 nfcv 2903 . . . . . . . . . . . . 13 𝑘𝑍
48 nfcv 2903 . . . . . . . . . . . . 13 𝑗𝑍
49 nfcv 2903 . . . . . . . . . . . . 13 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
50 nfcv 2903 . . . . . . . . . . . . 13 𝑘{𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))}
5118breq1d 5158 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))))
5251cbvrabv 3444 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))}
5352a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))})
54 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
5554oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝑗)))
5655breq2d 5160 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))))
5756rabbidv 3441 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5853, 57eqtrd 2775 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5958eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
6059rabbidv 3441 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6147, 48, 49, 50, 60cbvmpo2 45037 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6246, 61eqtri 2763 . . . . . . . . . . 11 𝑃 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
63 smflimlem4.9 . . . . . . . . . . . 12 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
64 nfcv 2903 . . . . . . . . . . . . 13 𝑗(𝐶‘(𝑚𝑃𝑘))
65 nfcv 2903 . . . . . . . . . . . . 13 𝑘(𝐶‘(𝑚𝑃𝑗))
66 oveq2 7439 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑚𝑃𝑘) = (𝑚𝑃𝑗))
6766fveq2d 6911 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑚𝑃𝑗)))
6847, 48, 64, 65, 67cbvmpo2 45037 . . . . . . . . . . . 12 (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
6963, 68eqtri 2763 . . . . . . . . . . 11 𝐻 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
70 smflimlem4.10 . . . . . . . . . . . 12 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
71 simpll 767 . . . . . . . . . . . . . . . 16 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 = 𝑗)
7271oveq2d 7447 . . . . . . . . . . . . . . 15 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) = (𝑚𝐻𝑗))
7372iineq2dv 5022 . . . . . . . . . . . . . 14 ((𝑘 = 𝑗𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7473iuneq2dv 5021 . . . . . . . . . . . . 13 (𝑘 = 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7574cbviinv 5046 . . . . . . . . . . . 12 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
7670, 75eqtri 2763 . . . . . . . . . . 11 𝐼 = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
77 smflimlem4.11 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7877adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7978ad5ant15 759 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
80 simp-4r 784 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑥 ∈ (𝐷𝐼))
81 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑘 ∈ ℕ)
8237ad3antlr 731 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (𝑦 / 2) ∈ ℝ+)
83 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (1 / 𝑘) < (𝑦 / 2))
849, 41, 43, 22, 45, 62, 69, 76, 79, 80, 81, 82, 83smflimlem3 46729 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
8584rexlimdva2 3155 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)))))
8640, 85mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
87 nfv 1912 . . . . . . . . . 10 𝑖((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
88 nfcv 2903 . . . . . . . . . 10 𝑖𝐹
89 nfcv 2903 . . . . . . . . . 10 𝑥𝐹
90 smflimlem4.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
9190ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
92 eleq1w 2822 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
9392anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
94 fveq2 6907 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
9594dmeqd 5919 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
9694, 95feq12d 6725 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
9793, 96imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
9897, 15chvarvv 1996 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
9998ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
100 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
101100dmeqd 5919 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
102101cbviinv 5046 . . . . . . . . . . . . . . 15 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
104103iuneq2i 5018 . . . . . . . . . . . . 13 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
105 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
106105iineq1d 45030 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙))
107 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
108107dmeqd 5919 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → dom (𝐹𝑙) = dom (𝐹𝑖))
109108cbviinv 5046 . . . . . . . . . . . . . . . 16 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
110109a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
111106, 110eqtrd 2775 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
112111cbviunv 5045 . . . . . . . . . . . . 13 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
113104, 112eqtri 2763 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
114113rabeqi 3447 . . . . . . . . . . 11 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
115 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
116115fveq1d 6909 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
117116cbvmptv 5261 . . . . . . . . . . . . . 14 (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
118117eqcomi 2744 . . . . . . . . . . . . 13 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))
119118eleq1i 2830 . . . . . . . . . . . 12 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ )
120119rabbii 3439 . . . . . . . . . . 11 {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
12117, 114, 1203eqtri 2767 . . . . . . . . . 10 𝐷 = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
122118fveq2i 6910 . . . . . . . . . . . 12 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)))
123122mpteq2i 5253 . . . . . . . . . . 11 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1244, 123eqtri 2763 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1253adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑥𝐷)
12637adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
12787, 88, 89, 91, 9, 99, 121, 124, 125, 126fnlimabslt 45635 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)))
12829adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
129 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
130128, 129resubcld 11689 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
131130adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
132130recnd 11287 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℂ)
133132abscld 15472 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
134133adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
13532rehalfcld 12511 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
136135ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝑦 / 2) ∈ ℝ)
137131leabsd 15450 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ≤ (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))))
13828recnd 11287 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℂ)
139138adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
140 recn 11243 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹𝑖)‘𝑥) ∈ ℝ → ((𝐹𝑖)‘𝑥) ∈ ℂ)
141140adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℂ)
142139, 141abssubd 15489 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
143142adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
144 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))
145143, 144eqbrtrd 5170 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
146145adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
147131, 134, 136, 137, 146lelttrd 11417 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2))
14829adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) ∈ ℝ)
149 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
150148, 149, 136ltsubadd2d 11859 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2) ↔ (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
151147, 150mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
152151ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
153152ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
154153ralimdva 3165 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
155154ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))))
15636, 155reximdai 3259 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
157127, 156mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
158115dmeqd 5919 . . . . . . . . . 10 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
159158eleq2d 2825 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑥 ∈ dom (𝐹𝑖) ↔ 𝑥 ∈ dom (𝐹𝑚)))
160116breq1d 5158 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)) ↔ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
161159, 160anbi12d 632 . . . . . . . 8 (𝑖 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))))
162116oveq1d 7446 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) = (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
163162breq2d 5160 . . . . . . . 8 (𝑖 = 𝑚 → ((𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) ↔ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
16436, 9, 86, 157, 161, 163rexanuz3 45036 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
165 df-3an 1088 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
166 3ancomb 1098 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
167165, 166bitr3i 277 . . . . . . . 8 (((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
168167rexbii 3092 . . . . . . 7 (∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
169164, 168sylib 218 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
17029ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) ∈ ℝ)
171153adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
172 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
173171, 172ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
174173ad4ant134 1173 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
175 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → 𝑦 ∈ ℝ+)
176175, 135syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (𝑦 / 2) ∈ ℝ)
177174, 176readdcld 11288 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
178177adantl3r 750 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
1791783ad2antr1 1187 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
180 rehalfcl 12490 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 / 2) ∈ ℝ)
18133, 180syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
18231, 181jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ))
183 readdcl 11236 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
184182, 183syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
185184, 181readdcld 11288 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
186185ad5ant13 757 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
187 simpr2 1194 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
188174adantrr 717 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
189184ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
190176adantrr 717 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝑦 / 2) ∈ ℝ)
191 simprr 773 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))
192188, 189, 190, 191ltadd1dd 11872 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
193192adantl3r 750 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
1941933adantr2 1169 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
195170, 179, 186, 187, 194lttrd 11420 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
19631recnd 11287 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℂ)
197181recnd 11287 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
198196, 197, 197addassd 11281 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + ((𝑦 / 2) + (𝑦 / 2))))
19932recnd 11287 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
200 2halves 12492 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
201199, 200syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
202201oveq2d 7447 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
203202adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
204198, 203eqtrd 2775 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
205204ad5ant13 757 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
206195, 205breqtrd 5174 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (𝐴 + 𝑦))
207206rexlimdva2 3155 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦)))
208169, 207mpd 15 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) < (𝐴 + 𝑦))
20929, 35, 208ltled 11407 . . . 4 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ≤ (𝐴 + 𝑦))
210209ralrimiva 3144 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦))
211 alrple 13245 . . . 4 (((𝐺𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
21228, 44, 211syl2anc 584 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
213210, 212mpbird 257 . 2 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ≤ 𝐴)
2142, 213ssrabdv 4084 1 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963   ciun 4996   ciin 4997   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517  SAlgcsalg 46264  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-smblfn 46652
This theorem is referenced by:  smflimlem5  46731
  Copyright terms: Public domain W3C validator