MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoeu1 Structured version   Visualization version   GIF version

Theorem termoeu1 16936
Description: Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
termoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem termoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termoeu1.b . . 3 (𝜑𝐵 ∈ (TermO‘𝐶))
2 eqid 2765 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2765 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 termoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4istermoi 16922 . . 3 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
61, 5mpdan 678 . 2 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
7 termoeu1.a . . . . 5 (𝜑𝐴 ∈ (TermO‘𝐶))
82, 3, 4istermoi 16922 . . . . 5 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
97, 8mpdan 678 . . . 4 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
10 oveq1 6851 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎(Hom ‘𝐶)𝐵) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2830 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2585 . . . . . . . 8 (𝑎 = 𝐴 → (∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3458 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2765 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprl 787 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprr 789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 16704 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2591 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq1 6851 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝑏(Hom ‘𝐶)𝐴) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2830 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝐵 → (𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2585 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐵 → (∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3460 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2591 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 401 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 720 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2765 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 7, 12termoinv 16935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
35343exp 1148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3635adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3736imp31 408 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
382, 30, 31, 32, 33, 14, 37inviso1 16694 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3938ex 401 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4039eximdv 2012 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4140expcom 402 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241exlimiv 2025 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4342com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4443impd 398 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4521, 29, 44syl2and 601 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4645imp 395 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
47 simprl 787 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
48 euelss 4080 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4919, 46, 47, 48syl3anc 1490 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5049exp42 426 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5251com14 96 . . . . . . . 8 (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5352expd 404 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5413, 53syldc 48 . . . . . 6 (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5554com15 101 . . . . 5 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5655impd 398 . . . 4 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
579, 56mpd 15 . . 3 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5857impd 398 . 2 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
596, 58mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  ∃!weu 2581  wral 3055  wss 3734   class class class wbr 4811  cfv 6070  (class class class)co 6844  Basecbs 16133  Hom chom 16228  Catccat 16593  Invcinv 16673  Isociso 16674  TermOctermo 16907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-1st 7368  df-2nd 7369  df-cat 16597  df-cid 16598  df-sect 16675  df-inv 16676  df-iso 16677  df-termo 16910
This theorem is referenced by:  termoeu1w  16937
  Copyright terms: Public domain W3C validator