MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoeu1 Structured version   Visualization version   GIF version

Theorem termoeu1 17277
Description: Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
termoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem termoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termoeu1.b . . 3 (𝜑𝐵 ∈ (TermO‘𝐶))
2 eqid 2821 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 termoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4istermoi 17263 . . 3 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
61, 5mpdan 685 . 2 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
7 termoeu1.a . . . . 5 (𝜑𝐴 ∈ (TermO‘𝐶))
82, 3, 4istermoi 17263 . . . . 5 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
97, 8mpdan 685 . . . 4 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
10 oveq1 7162 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎(Hom ‘𝐶)𝐵) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2898 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2668 . . . . . . . 8 (𝑎 = 𝐴 → (∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3617 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2821 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 17045 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2658 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq1 7162 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝑏(Hom ‘𝐶)𝐴) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2898 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝐵 → (𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2668 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐵 → (∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3620 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2658 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 415 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 7, 12termoinv 17276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
3534ad4ant134 1170 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
362, 30, 31, 32, 33, 14, 35inviso1 17035 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3736ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3837eximdv 1914 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3938expcom 416 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4039exlimiv 1927 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4140com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241impd 413 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4321, 29, 42syl2and 609 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4443imp 409 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
45 simprl 769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
46 euelss 4289 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4719, 44, 45, 46syl3anc 1367 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4847exp42 438 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
4948com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5049com14 96 . . . . . . . 8 (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150expd 418 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5213, 51syldc 48 . . . . . 6 (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5352com15 101 . . . . 5 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5453impd 413 . . . 4 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
559, 54mpd 15 . . 3 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5655impd 413 . 2 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
576, 56mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  wral 3138  wss 3935   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  Hom chom 16575  Catccat 16934  Invcinv 17014  Isociso 17015  TermOctermo 17248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-cat 16938  df-cid 16939  df-sect 17016  df-inv 17017  df-iso 17018  df-termo 17251
This theorem is referenced by:  termoeu1w  17278
  Copyright terms: Public domain W3C validator