MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkswwlksf1o Structured version   Visualization version   GIF version

Theorem wlkswwlksf1o 27659
Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
Hypothesis
Ref Expression
wlkswwlksf1o.f 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
Assertion
Ref Expression
wlkswwlksf1o (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Distinct variable group:   𝑤,𝐺
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem wlkswwlksf1o
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6685 . . . . . 6 (1st𝑤) ∈ V
2 breq1 5071 . . . . . 6 (𝑓 = (1st𝑤) → (𝑓(Walks‘𝐺)(2nd𝑤) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤)))
31, 2spcev 3609 . . . . 5 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤))
4 wlkiswwlks 27656 . . . . 5 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤) ↔ (2nd𝑤) ∈ (WWalks‘𝐺)))
53, 4syl5ib 246 . . . 4 (𝐺 ∈ USPGraph → ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (2nd𝑤) ∈ (WWalks‘𝐺)))
6 wlkcpr 27412 . . . . 5 (𝑤 ∈ (Walks‘𝐺) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤))
76biimpi 218 . . . 4 (𝑤 ∈ (Walks‘𝐺) → (1st𝑤)(Walks‘𝐺)(2nd𝑤))
85, 7impel 508 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd𝑤) ∈ (WWalks‘𝐺))
9 wlkswwlksf1o.f . . 3 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
108, 9fmptd 6880 . 2 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
11 simpr 487 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
12 fveq2 6672 . . . . . . . . 9 (𝑤 = 𝑥 → (2nd𝑤) = (2nd𝑥))
13 id 22 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺))
14 fvexd 6687 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → (2nd𝑥) ∈ V)
159, 12, 13, 14fvmptd3 6793 . . . . . . . 8 (𝑥 ∈ (Walks‘𝐺) → (𝐹𝑥) = (2nd𝑥))
16 fveq2 6672 . . . . . . . . 9 (𝑤 = 𝑦 → (2nd𝑤) = (2nd𝑦))
17 id 22 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺))
18 fvexd 6687 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → (2nd𝑦) ∈ V)
199, 16, 17, 18fvmptd3 6793 . . . . . . . 8 (𝑦 ∈ (Walks‘𝐺) → (𝐹𝑦) = (2nd𝑦))
2015, 19eqeqan12d 2840 . . . . . . 7 ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
2120adantl 484 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
22 uspgr2wlkeqi 27431 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2322ad4ant134 1170 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2423ex 415 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd𝑥) = (2nd𝑦) → 𝑥 = 𝑦))
2521, 24sylbid 242 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2625ralrimivva 3193 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
27 dff13 7015 . . . 4 (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2811, 26, 27sylanbrc 585 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺))
29 wlkiswwlks 27656 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
3029adantr 483 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
31 df-br 5069 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺))
32 vex 3499 . . . . . . . . . . . . . 14 𝑓 ∈ V
33 vex 3499 . . . . . . . . . . . . . 14 𝑦 ∈ V
3432, 33op2nd 7700 . . . . . . . . . . . . 13 (2nd ‘⟨𝑓, 𝑦⟩) = 𝑦
3534eqcomi 2832 . . . . . . . . . . . 12 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)
36 opex 5358 . . . . . . . . . . . . 13 𝑓, 𝑦⟩ ∈ V
37 eleq1 2902 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑥 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺)))
38 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑥 = ⟨𝑓, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝑓, 𝑦⟩))
3938eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑦 = (2nd𝑥) ↔ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)))
4037, 39anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑦⟩ → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)) ↔ (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩))))
4136, 40spcev 3609 . . . . . . . . . . . 12 ((⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4235, 41mpan2 689 . . . . . . . . . . 11 (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4331, 42sylbi 219 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4443exlimiv 1931 . . . . . . . . 9 (∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4530, 44syl6bir 256 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥))))
4645imp 409 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
47 df-rex 3146 . . . . . . 7 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4846, 47sylibr 236 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
4915eqeq2d 2834 . . . . . . 7 (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (2nd𝑥)))
5049rexbiia 3248 . . . . . 6 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
5148, 50sylibr 236 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
5251ralrimiva 3184 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
53 dffo3 6870 . . . 4 (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥)))
5411, 52, 53sylanbrc 585 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))
55 df-f1o 6364 . . 3 (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)))
5628, 54, 55sylanbrc 585 . 2 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
5710, 56mpdan 685 1 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cop 4575   class class class wbr 5068  cmpt 5148  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  1st c1st 7689  2nd c2nd 7690  USPGraphcuspgr 26935  Walkscwlks 27380  WWalkscwwlks 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-uspgr 26937  df-wlks 27383  df-wwlks 27610
This theorem is referenced by:  wlkswwlksen  27660  wlknwwlksnbij  27668
  Copyright terms: Public domain W3C validator