MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkswwlksf1o Structured version   Visualization version   GIF version

Theorem wlkswwlksf1o 29683
Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
Hypothesis
Ref Expression
wlkswwlksf1o.f 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
Assertion
Ref Expression
wlkswwlksf1o (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Distinct variable group:   𝑤,𝐺
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem wlkswwlksf1o
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . . 6 (1st𝑤) ∈ V
2 breq1 5145 . . . . . 6 (𝑓 = (1st𝑤) → (𝑓(Walks‘𝐺)(2nd𝑤) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤)))
31, 2spcev 3592 . . . . 5 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤))
4 wlkiswwlks 29680 . . . . 5 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤) ↔ (2nd𝑤) ∈ (WWalks‘𝐺)))
53, 4imbitrid 243 . . . 4 (𝐺 ∈ USPGraph → ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (2nd𝑤) ∈ (WWalks‘𝐺)))
6 wlkcpr 29436 . . . . 5 (𝑤 ∈ (Walks‘𝐺) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤))
76biimpi 215 . . . 4 (𝑤 ∈ (Walks‘𝐺) → (1st𝑤)(Walks‘𝐺)(2nd𝑤))
85, 7impel 505 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd𝑤) ∈ (WWalks‘𝐺))
9 wlkswwlksf1o.f . . 3 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
108, 9fmptd 7118 . 2 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
11 simpr 484 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
12 fveq2 6891 . . . . . . . . 9 (𝑤 = 𝑥 → (2nd𝑤) = (2nd𝑥))
13 id 22 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺))
14 fvexd 6906 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → (2nd𝑥) ∈ V)
159, 12, 13, 14fvmptd3 7022 . . . . . . . 8 (𝑥 ∈ (Walks‘𝐺) → (𝐹𝑥) = (2nd𝑥))
16 fveq2 6891 . . . . . . . . 9 (𝑤 = 𝑦 → (2nd𝑤) = (2nd𝑦))
17 id 22 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺))
18 fvexd 6906 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → (2nd𝑦) ∈ V)
199, 16, 17, 18fvmptd3 7022 . . . . . . . 8 (𝑦 ∈ (Walks‘𝐺) → (𝐹𝑦) = (2nd𝑦))
2015, 19eqeqan12d 2742 . . . . . . 7 ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
2120adantl 481 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
22 uspgr2wlkeqi 29455 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2322ad4ant134 1172 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2423ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd𝑥) = (2nd𝑦) → 𝑥 = 𝑦))
2521, 24sylbid 239 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2625ralrimivva 3196 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
27 dff13 7259 . . . 4 (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2811, 26, 27sylanbrc 582 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺))
29 wlkiswwlks 29680 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
3029adantr 480 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
31 df-br 5143 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺))
32 vex 3474 . . . . . . . . . . . . . 14 𝑓 ∈ V
33 vex 3474 . . . . . . . . . . . . . 14 𝑦 ∈ V
3432, 33op2nd 7996 . . . . . . . . . . . . 13 (2nd ‘⟨𝑓, 𝑦⟩) = 𝑦
3534eqcomi 2737 . . . . . . . . . . . 12 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)
36 opex 5460 . . . . . . . . . . . . 13 𝑓, 𝑦⟩ ∈ V
37 eleq1 2817 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑥 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺)))
38 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑥 = ⟨𝑓, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝑓, 𝑦⟩))
3938eqeq2d 2739 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑦 = (2nd𝑥) ↔ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)))
4037, 39anbi12d 631 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑦⟩ → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)) ↔ (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩))))
4136, 40spcev 3592 . . . . . . . . . . . 12 ((⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4235, 41mpan2 690 . . . . . . . . . . 11 (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4331, 42sylbi 216 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4443exlimiv 1926 . . . . . . . . 9 (∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4530, 44syl6bir 254 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥))))
4645imp 406 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
47 df-rex 3067 . . . . . . 7 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4846, 47sylibr 233 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
4915eqeq2d 2739 . . . . . . 7 (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (2nd𝑥)))
5049rexbiia 3088 . . . . . 6 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
5148, 50sylibr 233 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
5251ralrimiva 3142 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
53 dffo3 7106 . . . 4 (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥)))
5411, 52, 53sylanbrc 582 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))
55 df-f1o 6549 . . 3 (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)))
5628, 54, 55sylanbrc 582 . 2 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
5710, 56mpdan 686 1 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wral 3057  wrex 3066  Vcvv 3470  cop 4630   class class class wbr 5142  cmpt 5225  wf 6538  1-1wf1 6539  ontowfo 6540  1-1-ontowf1o 6541  cfv 6542  1st c1st 7985  2nd c2nd 7986  USPGraphcuspgr 28954  Walkscwlks 29403  WWalkscwwlks 29629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-xnn0 12569  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-edg 28854  df-uhgr 28864  df-upgr 28888  df-uspgr 28956  df-wlks 29406  df-wwlks 29634
This theorem is referenced by:  wlkswwlksen  29684  wlknwwlksnbij  29692
  Copyright terms: Public domain W3C validator