| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6919 |
. . . . . 6
⊢
(1st ‘𝑤) ∈ V |
| 2 | | breq1 5146 |
. . . . . 6
⊢ (𝑓 = (1st ‘𝑤) → (𝑓(Walks‘𝐺)(2nd ‘𝑤) ↔ (1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤))) |
| 3 | 1, 2 | spcev 3606 |
. . . . 5
⊢
((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd ‘𝑤)) |
| 4 | | wlkiswwlks 29896 |
. . . . 5
⊢ (𝐺 ∈ USPGraph →
(∃𝑓 𝑓(Walks‘𝐺)(2nd ‘𝑤) ↔ (2nd ‘𝑤) ∈ (WWalks‘𝐺))) |
| 5 | 3, 4 | imbitrid 244 |
. . . 4
⊢ (𝐺 ∈ USPGraph →
((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (2nd ‘𝑤) ∈ (WWalks‘𝐺))) |
| 6 | | wlkcpr 29647 |
. . . . 5
⊢ (𝑤 ∈ (Walks‘𝐺) ↔ (1st
‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) |
| 7 | 6 | biimpi 216 |
. . . 4
⊢ (𝑤 ∈ (Walks‘𝐺) → (1st
‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) |
| 8 | 5, 7 | impel 505 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd
‘𝑤) ∈
(WWalks‘𝐺)) |
| 9 | | wlkswwlksf1o.f |
. . 3
⊢ 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑤)) |
| 10 | 8, 9 | fmptd 7134 |
. 2
⊢ (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) |
| 11 | | simpr 484 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) |
| 12 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (2nd ‘𝑤) = (2nd ‘𝑥)) |
| 13 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺)) |
| 14 | | fvexd 6921 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Walks‘𝐺) → (2nd
‘𝑥) ∈
V) |
| 15 | 9, 12, 13, 14 | fvmptd3 7039 |
. . . . . . . 8
⊢ (𝑥 ∈ (Walks‘𝐺) → (𝐹‘𝑥) = (2nd ‘𝑥)) |
| 16 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (2nd ‘𝑤) = (2nd ‘𝑦)) |
| 17 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺)) |
| 18 | | fvexd 6921 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Walks‘𝐺) → (2nd
‘𝑦) ∈
V) |
| 19 | 9, 16, 17, 18 | fvmptd3 7039 |
. . . . . . . 8
⊢ (𝑦 ∈ (Walks‘𝐺) → (𝐹‘𝑦) = (2nd ‘𝑦)) |
| 20 | 15, 19 | eqeqan12d 2751 |
. . . . . . 7
⊢ ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (2nd ‘𝑥) = (2nd ‘𝑦))) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (2nd ‘𝑥) = (2nd ‘𝑦))) |
| 22 | | uspgr2wlkeqi 29666 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) → 𝑥 = 𝑦) |
| 23 | 22 | ad4ant134 1175 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) → 𝑥 = 𝑦) |
| 24 | 23 | ex 412 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd ‘𝑥) = (2nd ‘𝑦) → 𝑥 = 𝑦)) |
| 25 | 21, 24 | sylbid 240 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 26 | 25 | ralrimivva 3202 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 27 | | dff13 7275 |
. . . 4
⊢ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 28 | 11, 26, 27 | sylanbrc 583 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺)) |
| 29 | | wlkiswwlks 29896 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USPGraph →
(∃𝑓 𝑓(Walks‘𝐺)𝑦 ↔ 𝑦 ∈ (WWalks‘𝐺))) |
| 30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦 ↔ 𝑦 ∈ (WWalks‘𝐺))) |
| 31 | | df-br 5144 |
. . . . . . . . . . 11
⊢ (𝑓(Walks‘𝐺)𝑦 ↔ 〈𝑓, 𝑦〉 ∈ (Walks‘𝐺)) |
| 32 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
| 33 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 34 | 32, 33 | op2nd 8023 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑓, 𝑦〉) = 𝑦 |
| 35 | 34 | eqcomi 2746 |
. . . . . . . . . . . 12
⊢ 𝑦 = (2nd
‘〈𝑓, 𝑦〉) |
| 36 | | opex 5469 |
. . . . . . . . . . . . 13
⊢
〈𝑓, 𝑦〉 ∈ V |
| 37 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (𝑥 ∈ (Walks‘𝐺) ↔ 〈𝑓, 𝑦〉 ∈ (Walks‘𝐺))) |
| 38 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (2nd ‘𝑥) = (2nd
‘〈𝑓, 𝑦〉)) |
| 39 | 38 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (𝑦 = (2nd ‘𝑥) ↔ 𝑦 = (2nd ‘〈𝑓, 𝑦〉))) |
| 40 | 37, 39 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 〈𝑓, 𝑦〉 → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥)) ↔ (〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘〈𝑓, 𝑦〉)))) |
| 41 | 36, 40 | spcev 3606 |
. . . . . . . . . . . 12
⊢
((〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘〈𝑓, 𝑦〉)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 42 | 35, 41 | mpan2 691 |
. . . . . . . . . . 11
⊢
(〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 43 | 31, 42 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 44 | 43 | exlimiv 1930 |
. . . . . . . . 9
⊢
(∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 45 | 30, 44 | biimtrrdi 254 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥)))) |
| 46 | 45 | imp 406 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 47 | | df-rex 3071 |
. . . . . . 7
⊢
(∃𝑥 ∈
(Walks‘𝐺)𝑦 = (2nd ‘𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
| 48 | 46, 47 | sylibr 234 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd ‘𝑥)) |
| 49 | 15 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹‘𝑥) ↔ 𝑦 = (2nd ‘𝑥))) |
| 50 | 49 | rexbiia 3092 |
. . . . . 6
⊢
(∃𝑥 ∈
(Walks‘𝐺)𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd ‘𝑥)) |
| 51 | 48, 50 | sylibr 234 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥)) |
| 52 | 51 | ralrimiva 3146 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥)) |
| 53 | | dffo3 7122 |
. . . 4
⊢ (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥))) |
| 54 | 11, 52, 53 | sylanbrc 583 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)) |
| 55 | | df-f1o 6568 |
. . 3
⊢ (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))) |
| 56 | 28, 54, 55 | sylanbrc 583 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |
| 57 | 10, 56 | mpdan 687 |
1
⊢ (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |