MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkswwlksf1o Structured version   Visualization version   GIF version

Theorem wlkswwlksf1o 27665
Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
Hypothesis
Ref Expression
wlkswwlksf1o.f 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
Assertion
Ref Expression
wlkswwlksf1o (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Distinct variable group:   𝑤,𝐺
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem wlkswwlksf1o
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . . 6 (1st𝑤) ∈ V
2 breq1 5033 . . . . . 6 (𝑓 = (1st𝑤) → (𝑓(Walks‘𝐺)(2nd𝑤) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤)))
31, 2spcev 3555 . . . . 5 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤))
4 wlkiswwlks 27662 . . . . 5 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤) ↔ (2nd𝑤) ∈ (WWalks‘𝐺)))
53, 4syl5ib 247 . . . 4 (𝐺 ∈ USPGraph → ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (2nd𝑤) ∈ (WWalks‘𝐺)))
6 wlkcpr 27418 . . . . 5 (𝑤 ∈ (Walks‘𝐺) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤))
76biimpi 219 . . . 4 (𝑤 ∈ (Walks‘𝐺) → (1st𝑤)(Walks‘𝐺)(2nd𝑤))
85, 7impel 509 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd𝑤) ∈ (WWalks‘𝐺))
9 wlkswwlksf1o.f . . 3 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
108, 9fmptd 6855 . 2 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
11 simpr 488 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
12 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑥 → (2nd𝑤) = (2nd𝑥))
13 id 22 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺))
14 fvexd 6660 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → (2nd𝑥) ∈ V)
159, 12, 13, 14fvmptd3 6768 . . . . . . . 8 (𝑥 ∈ (Walks‘𝐺) → (𝐹𝑥) = (2nd𝑥))
16 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑦 → (2nd𝑤) = (2nd𝑦))
17 id 22 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺))
18 fvexd 6660 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → (2nd𝑦) ∈ V)
199, 16, 17, 18fvmptd3 6768 . . . . . . . 8 (𝑦 ∈ (Walks‘𝐺) → (𝐹𝑦) = (2nd𝑦))
2015, 19eqeqan12d 2815 . . . . . . 7 ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
2120adantl 485 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
22 uspgr2wlkeqi 27437 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2322ad4ant134 1171 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2423ex 416 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd𝑥) = (2nd𝑦) → 𝑥 = 𝑦))
2521, 24sylbid 243 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2625ralrimivva 3156 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
27 dff13 6991 . . . 4 (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2811, 26, 27sylanbrc 586 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺))
29 wlkiswwlks 27662 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
3029adantr 484 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
31 df-br 5031 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺))
32 vex 3444 . . . . . . . . . . . . . 14 𝑓 ∈ V
33 vex 3444 . . . . . . . . . . . . . 14 𝑦 ∈ V
3432, 33op2nd 7680 . . . . . . . . . . . . 13 (2nd ‘⟨𝑓, 𝑦⟩) = 𝑦
3534eqcomi 2807 . . . . . . . . . . . 12 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)
36 opex 5321 . . . . . . . . . . . . 13 𝑓, 𝑦⟩ ∈ V
37 eleq1 2877 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑥 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺)))
38 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑥 = ⟨𝑓, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝑓, 𝑦⟩))
3938eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑦 = (2nd𝑥) ↔ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)))
4037, 39anbi12d 633 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑦⟩ → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)) ↔ (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩))))
4136, 40spcev 3555 . . . . . . . . . . . 12 ((⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4235, 41mpan2 690 . . . . . . . . . . 11 (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4331, 42sylbi 220 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4443exlimiv 1931 . . . . . . . . 9 (∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4530, 44syl6bir 257 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥))))
4645imp 410 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
47 df-rex 3112 . . . . . . 7 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4846, 47sylibr 237 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
4915eqeq2d 2809 . . . . . . 7 (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (2nd𝑥)))
5049rexbiia 3209 . . . . . 6 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
5148, 50sylibr 237 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
5251ralrimiva 3149 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
53 dffo3 6845 . . . 4 (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥)))
5411, 52, 53sylanbrc 586 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))
55 df-f1o 6331 . . 3 (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)))
5628, 54, 55sylanbrc 586 . 2 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
5710, 56mpdan 686 1 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cop 4531   class class class wbr 5030  cmpt 5110  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  1st c1st 7669  2nd c2nd 7670  USPGraphcuspgr 26941  Walkscwlks 27386  WWalkscwwlks 27611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943  df-wlks 27389  df-wwlks 27616
This theorem is referenced by:  wlkswwlksen  27666  wlknwwlksnbij  27674
  Copyright terms: Public domain W3C validator