MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkswwlksf1o Structured version   Visualization version   GIF version

Theorem wlkswwlksf1o 29857
Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
Hypothesis
Ref Expression
wlkswwlksf1o.f 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
Assertion
Ref Expression
wlkswwlksf1o (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Distinct variable group:   𝑤,𝐺
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem wlkswwlksf1o
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . . 6 (1st𝑤) ∈ V
2 breq1 5092 . . . . . 6 (𝑓 = (1st𝑤) → (𝑓(Walks‘𝐺)(2nd𝑤) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤)))
31, 2spcev 3556 . . . . 5 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤))
4 wlkiswwlks 29854 . . . . 5 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)(2nd𝑤) ↔ (2nd𝑤) ∈ (WWalks‘𝐺)))
53, 4imbitrid 244 . . . 4 (𝐺 ∈ USPGraph → ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (2nd𝑤) ∈ (WWalks‘𝐺)))
6 wlkcpr 29607 . . . . 5 (𝑤 ∈ (Walks‘𝐺) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤))
76biimpi 216 . . . 4 (𝑤 ∈ (Walks‘𝐺) → (1st𝑤)(Walks‘𝐺)(2nd𝑤))
85, 7impel 505 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd𝑤) ∈ (WWalks‘𝐺))
9 wlkswwlksf1o.f . . 3 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd𝑤))
108, 9fmptd 7047 . 2 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
11 simpr 484 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺))
12 fveq2 6822 . . . . . . . . 9 (𝑤 = 𝑥 → (2nd𝑤) = (2nd𝑥))
13 id 22 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺))
14 fvexd 6837 . . . . . . . . 9 (𝑥 ∈ (Walks‘𝐺) → (2nd𝑥) ∈ V)
159, 12, 13, 14fvmptd3 6952 . . . . . . . 8 (𝑥 ∈ (Walks‘𝐺) → (𝐹𝑥) = (2nd𝑥))
16 fveq2 6822 . . . . . . . . 9 (𝑤 = 𝑦 → (2nd𝑤) = (2nd𝑦))
17 id 22 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺))
18 fvexd 6837 . . . . . . . . 9 (𝑦 ∈ (Walks‘𝐺) → (2nd𝑦) ∈ V)
199, 16, 17, 18fvmptd3 6952 . . . . . . . 8 (𝑦 ∈ (Walks‘𝐺) → (𝐹𝑦) = (2nd𝑦))
2015, 19eqeqan12d 2745 . . . . . . 7 ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
2120adantl 481 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) ↔ (2nd𝑥) = (2nd𝑦)))
22 uspgr2wlkeqi 29626 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2322ad4ant134 1175 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd𝑥) = (2nd𝑦)) → 𝑥 = 𝑦)
2423ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd𝑥) = (2nd𝑦) → 𝑥 = 𝑦))
2521, 24sylbid 240 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2625ralrimivva 3175 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
27 dff13 7188 . . . 4 (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2811, 26, 27sylanbrc 583 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺))
29 wlkiswwlks 29854 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
3029adantr 480 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦𝑦 ∈ (WWalks‘𝐺)))
31 df-br 5090 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺))
32 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
33 vex 3440 . . . . . . . . . . . . . 14 𝑦 ∈ V
3432, 33op2nd 7930 . . . . . . . . . . . . 13 (2nd ‘⟨𝑓, 𝑦⟩) = 𝑦
3534eqcomi 2740 . . . . . . . . . . . 12 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)
36 opex 5402 . . . . . . . . . . . . 13 𝑓, 𝑦⟩ ∈ V
37 eleq1 2819 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑥 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺)))
38 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = ⟨𝑓, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝑓, 𝑦⟩))
3938eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑦⟩ → (𝑦 = (2nd𝑥) ↔ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)))
4037, 39anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑦⟩ → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)) ↔ (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩))))
4136, 40spcev 3556 . . . . . . . . . . . 12 ((⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘⟨𝑓, 𝑦⟩)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4235, 41mpan2 691 . . . . . . . . . . 11 (⟨𝑓, 𝑦⟩ ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4331, 42sylbi 217 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4443exlimiv 1931 . . . . . . . . 9 (∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4530, 44biimtrrdi 254 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥))))
4645imp 406 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
47 df-rex 3057 . . . . . . 7 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd𝑥)))
4846, 47sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
4915eqeq2d 2742 . . . . . . 7 (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (2nd𝑥)))
5049rexbiia 3077 . . . . . 6 (∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd𝑥))
5148, 50sylibr 234 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
5251ralrimiva 3124 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥))
53 dffo3 7035 . . . 4 (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹𝑥)))
5411, 52, 53sylanbrc 583 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))
55 df-f1o 6488 . . 3 (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)))
5628, 54, 55sylanbrc 583 . 2 ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
5710, 56mpdan 687 1 (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cop 4579   class class class wbr 5089  cmpt 5170  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  1st c1st 7919  2nd c2nd 7920  USPGraphcuspgr 29126  Walkscwlks 29575  WWalkscwwlks 29803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-wwlks 29808
This theorem is referenced by:  wlkswwlksen  29858  wlknwwlksnbij  29866
  Copyright terms: Public domain W3C validator