Step | Hyp | Ref
| Expression |
1 | | fvex 6787 |
. . . . . 6
⊢
(1st ‘𝑤) ∈ V |
2 | | breq1 5077 |
. . . . . 6
⊢ (𝑓 = (1st ‘𝑤) → (𝑓(Walks‘𝐺)(2nd ‘𝑤) ↔ (1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤))) |
3 | 1, 2 | spcev 3545 |
. . . . 5
⊢
((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → ∃𝑓 𝑓(Walks‘𝐺)(2nd ‘𝑤)) |
4 | | wlkiswwlks 28241 |
. . . . 5
⊢ (𝐺 ∈ USPGraph →
(∃𝑓 𝑓(Walks‘𝐺)(2nd ‘𝑤) ↔ (2nd ‘𝑤) ∈ (WWalks‘𝐺))) |
5 | 3, 4 | syl5ib 243 |
. . . 4
⊢ (𝐺 ∈ USPGraph →
((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (2nd ‘𝑤) ∈ (WWalks‘𝐺))) |
6 | | wlkcpr 27996 |
. . . . 5
⊢ (𝑤 ∈ (Walks‘𝐺) ↔ (1st
‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) |
7 | 6 | biimpi 215 |
. . . 4
⊢ (𝑤 ∈ (Walks‘𝐺) → (1st
‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) |
8 | 5, 7 | impel 506 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (Walks‘𝐺)) → (2nd
‘𝑤) ∈
(WWalks‘𝐺)) |
9 | | wlkswwlksf1o.f |
. . 3
⊢ 𝐹 = (𝑤 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑤)) |
10 | 8, 9 | fmptd 6988 |
. 2
⊢ (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) |
11 | | simpr 485 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) |
12 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (2nd ‘𝑤) = (2nd ‘𝑥)) |
13 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Walks‘𝐺) → 𝑥 ∈ (Walks‘𝐺)) |
14 | | fvexd 6789 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Walks‘𝐺) → (2nd
‘𝑥) ∈
V) |
15 | 9, 12, 13, 14 | fvmptd3 6898 |
. . . . . . . 8
⊢ (𝑥 ∈ (Walks‘𝐺) → (𝐹‘𝑥) = (2nd ‘𝑥)) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (2nd ‘𝑤) = (2nd ‘𝑦)) |
17 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Walks‘𝐺) → 𝑦 ∈ (Walks‘𝐺)) |
18 | | fvexd 6789 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Walks‘𝐺) → (2nd
‘𝑦) ∈
V) |
19 | 9, 16, 17, 18 | fvmptd3 6898 |
. . . . . . . 8
⊢ (𝑦 ∈ (Walks‘𝐺) → (𝐹‘𝑦) = (2nd ‘𝑦)) |
20 | 15, 19 | eqeqan12d 2752 |
. . . . . . 7
⊢ ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (2nd ‘𝑥) = (2nd ‘𝑦))) |
21 | 20 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (2nd ‘𝑥) = (2nd ‘𝑦))) |
22 | | uspgr2wlkeqi 28015 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) → 𝑥 = 𝑦) |
23 | 22 | ad4ant134 1173 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) → 𝑥 = 𝑦) |
24 | 23 | ex 413 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((2nd ‘𝑥) = (2nd ‘𝑦) → 𝑥 = 𝑦)) |
25 | 21, 24 | sylbid 239 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
26 | 25 | ralrimivva 3123 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
27 | | dff13 7128 |
. . . 4
⊢ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑥 ∈ (Walks‘𝐺)∀𝑦 ∈ (Walks‘𝐺)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
28 | 11, 26, 27 | sylanbrc 583 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺)) |
29 | | wlkiswwlks 28241 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USPGraph →
(∃𝑓 𝑓(Walks‘𝐺)𝑦 ↔ 𝑦 ∈ (WWalks‘𝐺))) |
30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (∃𝑓 𝑓(Walks‘𝐺)𝑦 ↔ 𝑦 ∈ (WWalks‘𝐺))) |
31 | | df-br 5075 |
. . . . . . . . . . 11
⊢ (𝑓(Walks‘𝐺)𝑦 ↔ 〈𝑓, 𝑦〉 ∈ (Walks‘𝐺)) |
32 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
33 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
34 | 32, 33 | op2nd 7840 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈𝑓, 𝑦〉) = 𝑦 |
35 | 34 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢ 𝑦 = (2nd
‘〈𝑓, 𝑦〉) |
36 | | opex 5379 |
. . . . . . . . . . . . 13
⊢
〈𝑓, 𝑦〉 ∈ V |
37 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (𝑥 ∈ (Walks‘𝐺) ↔ 〈𝑓, 𝑦〉 ∈ (Walks‘𝐺))) |
38 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (2nd ‘𝑥) = (2nd
‘〈𝑓, 𝑦〉)) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 〈𝑓, 𝑦〉 → (𝑦 = (2nd ‘𝑥) ↔ 𝑦 = (2nd ‘〈𝑓, 𝑦〉))) |
40 | 37, 39 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 〈𝑓, 𝑦〉 → ((𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥)) ↔ (〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘〈𝑓, 𝑦〉)))) |
41 | 36, 40 | spcev 3545 |
. . . . . . . . . . . 12
⊢
((〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘〈𝑓, 𝑦〉)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
42 | 35, 41 | mpan2 688 |
. . . . . . . . . . 11
⊢
(〈𝑓, 𝑦〉 ∈ (Walks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
43 | 31, 42 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
44 | 43 | exlimiv 1933 |
. . . . . . . . 9
⊢
(∃𝑓 𝑓(Walks‘𝐺)𝑦 → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
45 | 30, 44 | syl6bir 253 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → (𝑦 ∈ (WWalks‘𝐺) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥)))) |
46 | 45 | imp 407 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
47 | | df-rex 3070 |
. . . . . . 7
⊢
(∃𝑥 ∈
(Walks‘𝐺)𝑦 = (2nd ‘𝑥) ↔ ∃𝑥(𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 = (2nd ‘𝑥))) |
48 | 46, 47 | sylibr 233 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd ‘𝑥)) |
49 | 15 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 ∈ (Walks‘𝐺) → (𝑦 = (𝐹‘𝑥) ↔ 𝑦 = (2nd ‘𝑥))) |
50 | 49 | rexbiia 3180 |
. . . . . 6
⊢
(∃𝑥 ∈
(Walks‘𝐺)𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (2nd ‘𝑥)) |
51 | 48, 50 | sylibr 233 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) ∧ 𝑦 ∈ (WWalks‘𝐺)) → ∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥)) |
52 | 51 | ralrimiva 3103 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥)) |
53 | | dffo3 6978 |
. . . 4
⊢ (𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺) ∧ ∀𝑦 ∈ (WWalks‘𝐺)∃𝑥 ∈ (Walks‘𝐺)𝑦 = (𝐹‘𝑥))) |
54 | 11, 52, 53 | sylanbrc 583 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺)) |
55 | | df-f1o 6440 |
. . 3
⊢ (𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺) ↔ (𝐹:(Walks‘𝐺)–1-1→(WWalks‘𝐺) ∧ 𝐹:(Walks‘𝐺)–onto→(WWalks‘𝐺))) |
56 | 28, 54, 55 | sylanbrc 583 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹:(Walks‘𝐺)⟶(WWalks‘𝐺)) → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |
57 | 10, 56 | mpdan 684 |
1
⊢ (𝐺 ∈ USPGraph → 𝐹:(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |