MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkswwlksf1o Structured version   Visualization version   GIF version

Theorem wlkswwlksf1o 29171
Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
Hypothesis
Ref Expression
wlkswwlksf1o.f ๐น = (๐‘ค โˆˆ (Walksโ€˜๐บ) โ†ฆ (2nd โ€˜๐‘ค))
Assertion
Ref Expression
wlkswwlksf1o (๐บ โˆˆ USPGraph โ†’ ๐น:(Walksโ€˜๐บ)โ€“1-1-ontoโ†’(WWalksโ€˜๐บ))
Distinct variable group:   ๐‘ค,๐บ
Allowed substitution hint:   ๐น(๐‘ค)

Proof of Theorem wlkswwlksf1o
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘“ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . . 6 (1st โ€˜๐‘ค) โˆˆ V
2 breq1 5151 . . . . . 6 (๐‘“ = (1st โ€˜๐‘ค) โ†’ (๐‘“(Walksโ€˜๐บ)(2nd โ€˜๐‘ค) โ†” (1st โ€˜๐‘ค)(Walksโ€˜๐บ)(2nd โ€˜๐‘ค)))
31, 2spcev 3596 . . . . 5 ((1st โ€˜๐‘ค)(Walksโ€˜๐บ)(2nd โ€˜๐‘ค) โ†’ โˆƒ๐‘“ ๐‘“(Walksโ€˜๐บ)(2nd โ€˜๐‘ค))
4 wlkiswwlks 29168 . . . . 5 (๐บ โˆˆ USPGraph โ†’ (โˆƒ๐‘“ ๐‘“(Walksโ€˜๐บ)(2nd โ€˜๐‘ค) โ†” (2nd โ€˜๐‘ค) โˆˆ (WWalksโ€˜๐บ)))
53, 4imbitrid 243 . . . 4 (๐บ โˆˆ USPGraph โ†’ ((1st โ€˜๐‘ค)(Walksโ€˜๐บ)(2nd โ€˜๐‘ค) โ†’ (2nd โ€˜๐‘ค) โˆˆ (WWalksโ€˜๐บ)))
6 wlkcpr 28924 . . . . 5 (๐‘ค โˆˆ (Walksโ€˜๐บ) โ†” (1st โ€˜๐‘ค)(Walksโ€˜๐บ)(2nd โ€˜๐‘ค))
76biimpi 215 . . . 4 (๐‘ค โˆˆ (Walksโ€˜๐บ) โ†’ (1st โ€˜๐‘ค)(Walksโ€˜๐บ)(2nd โ€˜๐‘ค))
85, 7impel 506 . . 3 ((๐บ โˆˆ USPGraph โˆง ๐‘ค โˆˆ (Walksโ€˜๐บ)) โ†’ (2nd โ€˜๐‘ค) โˆˆ (WWalksโ€˜๐บ))
9 wlkswwlksf1o.f . . 3 ๐น = (๐‘ค โˆˆ (Walksโ€˜๐บ) โ†ฆ (2nd โ€˜๐‘ค))
108, 9fmptd 7115 . 2 (๐บ โˆˆ USPGraph โ†’ ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ))
11 simpr 485 . . . 4 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ))
12 fveq2 6891 . . . . . . . . 9 (๐‘ค = ๐‘ฅ โ†’ (2nd โ€˜๐‘ค) = (2nd โ€˜๐‘ฅ))
13 id 22 . . . . . . . . 9 (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โ†’ ๐‘ฅ โˆˆ (Walksโ€˜๐บ))
14 fvexd 6906 . . . . . . . . 9 (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โ†’ (2nd โ€˜๐‘ฅ) โˆˆ V)
159, 12, 13, 14fvmptd3 7021 . . . . . . . 8 (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โ†’ (๐นโ€˜๐‘ฅ) = (2nd โ€˜๐‘ฅ))
16 fveq2 6891 . . . . . . . . 9 (๐‘ค = ๐‘ฆ โ†’ (2nd โ€˜๐‘ค) = (2nd โ€˜๐‘ฆ))
17 id 22 . . . . . . . . 9 (๐‘ฆ โˆˆ (Walksโ€˜๐บ) โ†’ ๐‘ฆ โˆˆ (Walksโ€˜๐บ))
18 fvexd 6906 . . . . . . . . 9 (๐‘ฆ โˆˆ (Walksโ€˜๐บ) โ†’ (2nd โ€˜๐‘ฆ) โˆˆ V)
199, 16, 17, 18fvmptd3 7021 . . . . . . . 8 (๐‘ฆ โˆˆ (Walksโ€˜๐บ) โ†’ (๐นโ€˜๐‘ฆ) = (2nd โ€˜๐‘ฆ))
2015, 19eqeqan12d 2746 . . . . . . 7 ((๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ)) โ†’ ((๐นโ€˜๐‘ฅ) = (๐นโ€˜๐‘ฆ) โ†” (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)))
2120adantl 482 . . . . . 6 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ))) โ†’ ((๐นโ€˜๐‘ฅ) = (๐นโ€˜๐‘ฆ) โ†” (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)))
22 uspgr2wlkeqi 28943 . . . . . . . 8 ((๐บ โˆˆ USPGraph โˆง (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ)) โˆง (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)) โ†’ ๐‘ฅ = ๐‘ฆ)
2322ad4ant134 1174 . . . . . . 7 ((((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ))) โˆง (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)) โ†’ ๐‘ฅ = ๐‘ฆ)
2423ex 413 . . . . . 6 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ))) โ†’ ((2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ))
2521, 24sylbid 239 . . . . 5 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ โˆˆ (Walksโ€˜๐บ))) โ†’ ((๐นโ€˜๐‘ฅ) = (๐นโ€˜๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ))
2625ralrimivva 3200 . . . 4 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ โˆ€๐‘ฅ โˆˆ (Walksโ€˜๐บ)โˆ€๐‘ฆ โˆˆ (Walksโ€˜๐บ)((๐นโ€˜๐‘ฅ) = (๐นโ€˜๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ))
27 dff13 7256 . . . 4 (๐น:(Walksโ€˜๐บ)โ€“1-1โ†’(WWalksโ€˜๐บ) โ†” (๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ) โˆง โˆ€๐‘ฅ โˆˆ (Walksโ€˜๐บ)โˆ€๐‘ฆ โˆˆ (Walksโ€˜๐บ)((๐นโ€˜๐‘ฅ) = (๐นโ€˜๐‘ฆ) โ†’ ๐‘ฅ = ๐‘ฆ)))
2811, 26, 27sylanbrc 583 . . 3 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ ๐น:(Walksโ€˜๐บ)โ€“1-1โ†’(WWalksโ€˜๐บ))
29 wlkiswwlks 29168 . . . . . . . . . 10 (๐บ โˆˆ USPGraph โ†’ (โˆƒ๐‘“ ๐‘“(Walksโ€˜๐บ)๐‘ฆ โ†” ๐‘ฆ โˆˆ (WWalksโ€˜๐บ)))
3029adantr 481 . . . . . . . . 9 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ (โˆƒ๐‘“ ๐‘“(Walksโ€˜๐บ)๐‘ฆ โ†” ๐‘ฆ โˆˆ (WWalksโ€˜๐บ)))
31 df-br 5149 . . . . . . . . . . 11 (๐‘“(Walksโ€˜๐บ)๐‘ฆ โ†” โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ (Walksโ€˜๐บ))
32 vex 3478 . . . . . . . . . . . . . 14 ๐‘“ โˆˆ V
33 vex 3478 . . . . . . . . . . . . . 14 ๐‘ฆ โˆˆ V
3432, 33op2nd 7986 . . . . . . . . . . . . 13 (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ) = ๐‘ฆ
3534eqcomi 2741 . . . . . . . . . . . 12 ๐‘ฆ = (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ)
36 opex 5464 . . . . . . . . . . . . 13 โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ V
37 eleq1 2821 . . . . . . . . . . . . . 14 (๐‘ฅ = โŸจ๐‘“, ๐‘ฆโŸฉ โ†’ (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โ†” โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ (Walksโ€˜๐บ)))
38 fveq2 6891 . . . . . . . . . . . . . . 15 (๐‘ฅ = โŸจ๐‘“, ๐‘ฆโŸฉ โ†’ (2nd โ€˜๐‘ฅ) = (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ))
3938eqeq2d 2743 . . . . . . . . . . . . . 14 (๐‘ฅ = โŸจ๐‘“, ๐‘ฆโŸฉ โ†’ (๐‘ฆ = (2nd โ€˜๐‘ฅ) โ†” ๐‘ฆ = (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ)))
4037, 39anbi12d 631 . . . . . . . . . . . . 13 (๐‘ฅ = โŸจ๐‘“, ๐‘ฆโŸฉ โ†’ ((๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)) โ†” (โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ))))
4136, 40spcev 3596 . . . . . . . . . . . 12 ((โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜โŸจ๐‘“, ๐‘ฆโŸฉ)) โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
4235, 41mpan2 689 . . . . . . . . . . 11 (โŸจ๐‘“, ๐‘ฆโŸฉ โˆˆ (Walksโ€˜๐บ) โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
4331, 42sylbi 216 . . . . . . . . . 10 (๐‘“(Walksโ€˜๐บ)๐‘ฆ โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
4443exlimiv 1933 . . . . . . . . 9 (โˆƒ๐‘“ ๐‘“(Walksโ€˜๐บ)๐‘ฆ โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
4530, 44syl6bir 253 . . . . . . . 8 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ (๐‘ฆ โˆˆ (WWalksโ€˜๐บ) โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ))))
4645imp 407 . . . . . . 7 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง ๐‘ฆ โˆˆ (WWalksโ€˜๐บ)) โ†’ โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
47 df-rex 3071 . . . . . . 7 (โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (2nd โ€˜๐‘ฅ) โ†” โˆƒ๐‘ฅ(๐‘ฅ โˆˆ (Walksโ€˜๐บ) โˆง ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
4846, 47sylibr 233 . . . . . 6 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง ๐‘ฆ โˆˆ (WWalksโ€˜๐บ)) โ†’ โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (2nd โ€˜๐‘ฅ))
4915eqeq2d 2743 . . . . . . 7 (๐‘ฅ โˆˆ (Walksโ€˜๐บ) โ†’ (๐‘ฆ = (๐นโ€˜๐‘ฅ) โ†” ๐‘ฆ = (2nd โ€˜๐‘ฅ)))
5049rexbiia 3092 . . . . . 6 (โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (๐นโ€˜๐‘ฅ) โ†” โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (2nd โ€˜๐‘ฅ))
5148, 50sylibr 233 . . . . 5 (((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โˆง ๐‘ฆ โˆˆ (WWalksโ€˜๐บ)) โ†’ โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (๐นโ€˜๐‘ฅ))
5251ralrimiva 3146 . . . 4 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ โˆ€๐‘ฆ โˆˆ (WWalksโ€˜๐บ)โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (๐นโ€˜๐‘ฅ))
53 dffo3 7103 . . . 4 (๐น:(Walksโ€˜๐บ)โ€“ontoโ†’(WWalksโ€˜๐บ) โ†” (๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ) โˆง โˆ€๐‘ฆ โˆˆ (WWalksโ€˜๐บ)โˆƒ๐‘ฅ โˆˆ (Walksโ€˜๐บ)๐‘ฆ = (๐นโ€˜๐‘ฅ)))
5411, 52, 53sylanbrc 583 . . 3 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ ๐น:(Walksโ€˜๐บ)โ€“ontoโ†’(WWalksโ€˜๐บ))
55 df-f1o 6550 . . 3 (๐น:(Walksโ€˜๐บ)โ€“1-1-ontoโ†’(WWalksโ€˜๐บ) โ†” (๐น:(Walksโ€˜๐บ)โ€“1-1โ†’(WWalksโ€˜๐บ) โˆง ๐น:(Walksโ€˜๐บ)โ€“ontoโ†’(WWalksโ€˜๐บ)))
5628, 54, 55sylanbrc 583 . 2 ((๐บ โˆˆ USPGraph โˆง ๐น:(Walksโ€˜๐บ)โŸถ(WWalksโ€˜๐บ)) โ†’ ๐น:(Walksโ€˜๐บ)โ€“1-1-ontoโ†’(WWalksโ€˜๐บ))
5710, 56mpdan 685 1 (๐บ โˆˆ USPGraph โ†’ ๐น:(Walksโ€˜๐บ)โ€“1-1-ontoโ†’(WWalksโ€˜๐บ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   = wceq 1541  โˆƒwex 1781   โˆˆ wcel 2106  โˆ€wral 3061  โˆƒwrex 3070  Vcvv 3474  โŸจcop 4634   class class class wbr 5148   โ†ฆ cmpt 5231  โŸถwf 6539  โ€“1-1โ†’wf1 6540  โ€“ontoโ†’wfo 6541  โ€“1-1-ontoโ†’wf1o 6542  โ€˜cfv 6543  1st c1st 7975  2nd c2nd 7976  USPGraphcuspgr 28446  Walkscwlks 28891  WWalkscwwlks 29117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-hash 14293  df-word 14467  df-edg 28346  df-uhgr 28356  df-upgr 28380  df-uspgr 28448  df-wlks 28894  df-wwlks 29122
This theorem is referenced by:  wlkswwlksen  29172  wlknwwlksnbij  29180
  Copyright terms: Public domain W3C validator