MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12b Structured version   Visualization version   GIF version

Theorem lemul12b 12151
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12b ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12b
StepHypRef Expression
1 lemul2a 12149 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷))
21ex 412 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
323comr 1125 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
433expb 1120 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
54adantrrr 724 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
65adantlr 714 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
7 lemul1a 12148 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) ∧ 𝐴𝐵) → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))
87ex 412 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
98ad4ant134 1174 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
109adantrl 715 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
116, 10anim12d 608 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐶𝐷𝐴𝐵) → ((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))))
1211ancomsd 465 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → ((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))))
13 remulcl 11269 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1413adantlr 714 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1514ad2ant2r 746 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴 · 𝐶) ∈ ℝ)
16 remulcl 11269 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐴 · 𝐷) ∈ ℝ)
1716ad2ant2r 746 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴 · 𝐷) ∈ ℝ)
1817ad2ant2rl 748 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴 · 𝐷) ∈ ℝ)
19 remulcl 11269 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
2019adantrr 716 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐵 · 𝐷) ∈ ℝ)
2120ad2ant2l 745 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐵 · 𝐷) ∈ ℝ)
22 letr 11384 . . 3 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐴 · 𝐷) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
2315, 18, 21, 22syl3anc 1371 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
2412, 23syld 47 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  lemul12a  12152  lemul12bd  12238  lo1mul  15674  pntibndlem2  27653
  Copyright terms: Public domain W3C validator