![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruwun | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
gruwun | ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grutr 10862 | . . 3 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈) |
3 | simpr 484 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅) | |
4 | gruuni 10869 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
5 | 4 | adantlr 714 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) |
6 | grupw 10864 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
7 | 6 | adantlr 714 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
8 | grupr 10866 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | |
9 | 8 | ad4ant134 1174 | . . . . 5 ⊢ ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
10 | 9 | ralrimiva 3152 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
11 | 5, 7, 10 | 3jca 1128 | . . 3 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
12 | 11 | ralrimiva 3152 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
13 | iswun 10773 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
15 | 2, 3, 12, 14 | mpbir3and 1342 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 Tr wtr 5283 WUnicwun 10769 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-wun 10771 df-gru 10860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |