| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruwun | Structured version Visualization version GIF version | ||
| Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| gruwun | ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grutr 10746 | . . 3 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈) |
| 3 | simpr 484 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅) | |
| 4 | gruuni 10753 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
| 5 | 4 | adantlr 715 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) |
| 6 | grupw 10748 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
| 7 | 6 | adantlr 715 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
| 8 | grupr 10750 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | |
| 9 | 8 | ad4ant134 1175 | . . . . 5 ⊢ ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
| 10 | 9 | ralrimiva 3125 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
| 11 | 5, 7, 10 | 3jca 1128 | . . 3 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 12 | 11 | ralrimiva 3125 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 13 | iswun 10657 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
| 15 | 2, 3, 12, 14 | mpbir3and 1343 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 Tr wtr 5214 WUnicwun 10653 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-wun 10655 df-gru 10744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |