![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruwun | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
gruwun | ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grutr 9950 | . . 3 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
2 | 1 | adantr 474 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈) |
3 | simpr 479 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅) | |
4 | gruuni 9957 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
5 | 4 | adantlr 705 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) |
6 | grupw 9952 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
7 | 6 | adantlr 705 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
8 | grupr 9954 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | |
9 | 8 | ad4ant134 1176 | . . . . 5 ⊢ ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
10 | 9 | ralrimiva 3147 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
11 | 5, 7, 10 | 3jca 1119 | . . 3 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
12 | 11 | ralrimiva 3147 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
13 | iswun 9861 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
14 | 13 | adantr 474 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
15 | 2, 3, 12, 14 | mpbir3and 1399 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 ∅c0 4140 𝒫 cpw 4378 {cpr 4399 ∪ cuni 4671 Tr wtr 4987 WUnicwun 9857 Univcgru 9947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 df-wun 9859 df-gru 9948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |