| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruwun | Structured version Visualization version GIF version | ||
| Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| gruwun | ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grutr 10684 | . . 3 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈) |
| 3 | simpr 484 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅) | |
| 4 | gruuni 10691 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
| 5 | 4 | adantlr 715 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) |
| 6 | grupw 10686 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
| 7 | 6 | adantlr 715 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
| 8 | grupr 10688 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | |
| 9 | 8 | ad4ant134 1175 | . . . . 5 ⊢ ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
| 10 | 9 | ralrimiva 3124 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
| 11 | 5, 7, 10 | 3jca 1128 | . . 3 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 12 | 11 | ralrimiva 3124 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 13 | iswun 10595 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
| 15 | 2, 3, 12, 14 | mpbir3and 1343 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4280 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4856 Tr wtr 5196 WUnicwun 10591 Univcgru 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-wun 10593 df-gru 10682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |