MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruwun Structured version   Visualization version   GIF version

Theorem gruwun 10854
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
gruwun ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)

Proof of Theorem gruwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grutr 10834 . . 3 (𝑈 ∈ Univ → Tr 𝑈)
21adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈)
3 simpr 484 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅)
4 gruuni 10841 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
54adantlr 715 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑥𝑈)
6 grupw 10836 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
76adantlr 715 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
8 grupr 10838 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
98ad4ant134 1174 . . . . 5 ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) ∧ 𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
109ralrimiva 3145 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
115, 7, 103jca 1128 . . 3 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
1211ralrimiva 3145 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
13 iswun 10745 . . 3 (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
1413adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
152, 3, 12, 14mpbir3and 1342 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  wne 2939  wral 3060  c0 4332  𝒫 cpw 4599  {cpr 4627   cuni 4906  Tr wtr 5258  WUnicwun 10741  Univcgru 10831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-wun 10743  df-gru 10832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator