MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruwun Structured version   Visualization version   GIF version

Theorem gruwun 10553
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
gruwun ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)

Proof of Theorem gruwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grutr 10533 . . 3 (𝑈 ∈ Univ → Tr 𝑈)
21adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈)
3 simpr 484 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅)
4 gruuni 10540 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
54adantlr 711 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑥𝑈)
6 grupw 10535 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
76adantlr 711 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
8 grupr 10537 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
98ad4ant134 1172 . . . . 5 ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) ∧ 𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
109ralrimiva 3109 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
115, 7, 103jca 1126 . . 3 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
1211ralrimiva 3109 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
13 iswun 10444 . . 3 (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
1413adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
152, 3, 12, 14mpbir3and 1340 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2109  wne 2944  wral 3065  c0 4261  𝒫 cpw 4538  {cpr 4568   cuni 4844  Tr wtr 5195  WUnicwun 10440  Univcgru 10530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-wun 10442  df-gru 10531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator