![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruwun | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
gruwun | ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grutr 10794 | . . 3 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈) |
3 | simpr 484 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅) | |
4 | gruuni 10801 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
5 | 4 | adantlr 712 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) |
6 | grupw 10796 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
7 | 6 | adantlr 712 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
8 | grupr 10798 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | |
9 | 8 | ad4ant134 1173 | . . . . 5 ⊢ ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
10 | 9 | ralrimiva 3145 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
11 | 5, 7, 10 | 3jca 1127 | . . 3 ⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
12 | 11 | ralrimiva 3145 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
13 | iswun 10705 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
15 | 2, 3, 12, 14 | mpbir3and 1341 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∅c0 4322 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 WUnicwun 10701 Univcgru 10791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-wun 10703 df-gru 10792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |