MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anim12d1 Structured version   Visualization version   GIF version

Theorem anim12d1 609
Description: Variant of anim12d 608 where the second implication does not depend on the antecedent. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
anim12d1.1 (𝜑 → (𝜓𝜒))
anim12d1.2 (𝜃𝜏)
Assertion
Ref Expression
anim12d1 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))

Proof of Theorem anim12d1
StepHypRef Expression
1 anim12d1.1 . 2 (𝜑 → (𝜓𝜒))
2 anim12d1.2 . . 3 (𝜃𝜏)
32a1i 11 . 2 (𝜑 → (𝜃𝜏))
41, 3anim12d 608 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  fun  6620  frrlem13  8085  alephord  9762  grudomon  10504  xrsupexmnf  12968  xrinfmexpnf  12969  joinfval  18006  meetfval  18020  cnpresti  22347  1stcrest  22512  upgrwlkdvdelem  28005
  Copyright terms: Public domain W3C validator