MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmexpnf Structured version   Visualization version   GIF version

Theorem xrinfmexpnf 13040
Description: Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmexpnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmexpnf
StepHypRef Expression
1 elun 4083 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {+∞}) ↔ (𝑦𝐴𝑦 ∈ {+∞}))
2 simpr 485 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦𝐴 → ¬ 𝑦 < 𝑥))
3 velsn 4577 . . . . . . . . 9 (𝑦 ∈ {+∞} ↔ 𝑦 = +∞)
4 pnfnlt 12864 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
5 breq1 5077 . . . . . . . . . . 11 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
65notbid 318 . . . . . . . . . 10 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
74, 6syl5ibrcom 246 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = +∞ → ¬ 𝑦 < 𝑥))
83, 7syl5bi 241 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
98adantr 481 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
102, 9jaod 856 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → ((𝑦𝐴𝑦 ∈ {+∞}) → ¬ 𝑦 < 𝑥))
111, 10syl5bi 241 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥))
1211ex 413 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥)))
1312ralimdv2 3107 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 → ∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥))
14 elun1 4110 . . . . . . 7 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {+∞}))
1514anim1i 615 . . . . . 6 ((𝑧𝐴𝑧 < 𝑦) → (𝑧 ∈ (𝐴 ∪ {+∞}) ∧ 𝑧 < 𝑦))
1615reximi2 3175 . . . . 5 (∃𝑧𝐴 𝑧 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)
1716imim2i 16 . . . 4 ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1817ralimi 3087 . . 3 (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1913, 18anim12d1 610 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))))
2019reximia 3176 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cun 3885  {csn 4561   class class class wbr 5074  +∞cpnf 11006  *cxr 11008   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  xrinfmss  13044
  Copyright terms: Public domain W3C validator