MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmexpnf Structured version   Visualization version   GIF version

Theorem xrinfmexpnf 13266
Description: Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmexpnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmexpnf
StepHypRef Expression
1 elun 4116 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {+∞}) ↔ (𝑦𝐴𝑦 ∈ {+∞}))
2 simpr 484 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦𝐴 → ¬ 𝑦 < 𝑥))
3 velsn 4605 . . . . . . . . 9 (𝑦 ∈ {+∞} ↔ 𝑦 = +∞)
4 pnfnlt 13088 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
5 breq1 5110 . . . . . . . . . . 11 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
65notbid 318 . . . . . . . . . 10 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
74, 6syl5ibrcom 247 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = +∞ → ¬ 𝑦 < 𝑥))
83, 7biimtrid 242 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
98adantr 480 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
102, 9jaod 859 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → ((𝑦𝐴𝑦 ∈ {+∞}) → ¬ 𝑦 < 𝑥))
111, 10biimtrid 242 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥))
1211ex 412 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥)))
1312ralimdv2 3142 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 → ∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥))
14 elun1 4145 . . . . . . 7 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {+∞}))
1514anim1i 615 . . . . . 6 ((𝑧𝐴𝑧 < 𝑦) → (𝑧 ∈ (𝐴 ∪ {+∞}) ∧ 𝑧 < 𝑦))
1615reximi2 3062 . . . . 5 (∃𝑧𝐴 𝑧 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)
1716imim2i 16 . . . 4 ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1817ralimi 3066 . . 3 (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1913, 18anim12d1 610 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))))
2019reximia 3064 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3912  {csn 4589   class class class wbr 5107  +∞cpnf 11205  *cxr 11207   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  xrinfmss  13270
  Copyright terms: Public domain W3C validator