Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephord | Structured version Visualization version GIF version |
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
alephord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephordi 9900 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
3 | brsdom 8811 | . . 3 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
4 | alephon 9895 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
5 | alephon 9895 | . . . . . . . . 9 ⊢ (ℵ‘𝐵) ∈ On | |
6 | domtriord 8963 | . . . . . . . . 9 ⊢ (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
7 | 4, 5, 6 | mp2an 689 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴)) |
8 | alephordi 9900 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
9 | 8 | con3d 152 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ 𝐵 ∈ 𝐴)) |
10 | 7, 9 | biimtrid 241 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵 ∈ 𝐴)) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵 ∈ 𝐴)) |
12 | ontri1 6320 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
13 | 11, 12 | sylibrd 258 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → 𝐴 ⊆ 𝐵)) |
14 | fveq2 6809 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
15 | eqeng 8822 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ On → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
16 | 4, 14, 15 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
17 | 16 | necon3bi 2968 | . . . . 5 ⊢ (¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵) → 𝐴 ≠ 𝐵) |
18 | 13, 17 | anim12d1 610 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
19 | onelpss 6326 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | |
20 | 18, 19 | sylibrd 258 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → 𝐴 ∈ 𝐵)) |
21 | 3, 20 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → 𝐴 ∈ 𝐵)) |
22 | 2, 21 | impbid 211 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ⊆ wss 3896 class class class wbr 5085 Oncon0 6286 ‘cfv 6463 ≈ cen 8776 ≼ cdom 8777 ≺ csdm 8778 ℵcale 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-oi 9337 df-har 9384 df-card 9765 df-aleph 9766 |
This theorem is referenced by: alephord2 9902 alephdom 9907 alephval2 10398 alephiso2 41393 |
Copyright terms: Public domain | W3C validator |