MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord Structured version   Visualization version   GIF version

Theorem alephord 9988
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
alephord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephord
StepHypRef Expression
1 alephordi 9987 . . 3 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 brsdom 8907 . . 3 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
4 alephon 9982 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
5 alephon 9982 . . . . . . . . 9 (ℵ‘𝐵) ∈ On
6 domtriord 9047 . . . . . . . . 9 (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
74, 5, 6mp2an 692 . . . . . . . 8 ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴))
8 alephordi 9987 . . . . . . . . 9 (𝐴 ∈ On → (𝐵𝐴 → (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
98con3d 152 . . . . . . . 8 (𝐴 ∈ On → (¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ 𝐵𝐴))
107, 9biimtrid 242 . . . . . . 7 (𝐴 ∈ On → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
1110adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
12 ontri1 6345 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1311, 12sylibrd 259 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → 𝐴𝐵))
14 fveq2 6826 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
15 eqeng 8918 . . . . . . 7 ((ℵ‘𝐴) ∈ On → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
164, 14, 15mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
1716necon3bi 2951 . . . . 5 (¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵) → 𝐴𝐵)
1813, 17anim12d1 610 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → (𝐴𝐵𝐴𝐵)))
19 onelpss 6351 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
2018, 19sylibrd 259 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → 𝐴𝐵))
213, 20biimtrid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → 𝐴𝐵))
222, 21impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3905   class class class wbr 5095  Oncon0 6311  cfv 6486  cen 8876  cdom 8877  csdm 8878  cale 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-oi 9421  df-har 9468  df-card 9854  df-aleph 9855
This theorem is referenced by:  alephord2  9989  alephdom  9994  alephval2  10485  alephiso2  43531
  Copyright terms: Public domain W3C validator