MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord Structured version   Visualization version   GIF version

Theorem alephord 9963
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
alephord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephord
StepHypRef Expression
1 alephordi 9962 . . 3 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 brsdom 8897 . . 3 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
4 alephon 9957 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
5 alephon 9957 . . . . . . . . 9 (ℵ‘𝐵) ∈ On
6 domtriord 9036 . . . . . . . . 9 (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
74, 5, 6mp2an 692 . . . . . . . 8 ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴))
8 alephordi 9962 . . . . . . . . 9 (𝐴 ∈ On → (𝐵𝐴 → (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
98con3d 152 . . . . . . . 8 (𝐴 ∈ On → (¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ 𝐵𝐴))
107, 9biimtrid 242 . . . . . . 7 (𝐴 ∈ On → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
1110adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
12 ontri1 6340 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1311, 12sylibrd 259 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → 𝐴𝐵))
14 fveq2 6822 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
15 eqeng 8908 . . . . . . 7 ((ℵ‘𝐴) ∈ On → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
164, 14, 15mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
1716necon3bi 2954 . . . . 5 (¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵) → 𝐴𝐵)
1813, 17anim12d1 610 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → (𝐴𝐵𝐴𝐵)))
19 onelpss 6346 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
2018, 19sylibrd 259 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → 𝐴𝐵))
213, 20biimtrid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → 𝐴𝐵))
222, 21impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3902   class class class wbr 5091  Oncon0 6306  cfv 6481  cen 8866  cdom 8867  csdm 8868  cale 9826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-card 9829  df-aleph 9830
This theorem is referenced by:  alephord2  9964  alephdom  9969  alephval2  10460  alephiso2  43590
  Copyright terms: Public domain W3C validator