| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephord | Structured version Visualization version GIF version | ||
| Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordi 9962 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
| 3 | brsdom 8897 | . . 3 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
| 4 | alephon 9957 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
| 5 | alephon 9957 | . . . . . . . . 9 ⊢ (ℵ‘𝐵) ∈ On | |
| 6 | domtriord 9036 | . . . . . . . . 9 ⊢ (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴)) |
| 8 | alephordi 9962 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
| 9 | 8 | con3d 152 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ 𝐵 ∈ 𝐴)) |
| 10 | 7, 9 | biimtrid 242 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵 ∈ 𝐴)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵 ∈ 𝐴)) |
| 12 | ontri1 6340 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 13 | 11, 12 | sylibrd 259 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → 𝐴 ⊆ 𝐵)) |
| 14 | fveq2 6822 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
| 15 | eqeng 8908 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ On → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
| 16 | 4, 14, 15 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
| 17 | 16 | necon3bi 2954 | . . . . 5 ⊢ (¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵) → 𝐴 ≠ 𝐵) |
| 18 | 13, 17 | anim12d1 610 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
| 19 | onelpss 6346 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | |
| 20 | 18, 19 | sylibrd 259 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → 𝐴 ∈ 𝐵)) |
| 21 | 3, 20 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → 𝐴 ∈ 𝐵)) |
| 22 | 2, 21 | impbid 212 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 class class class wbr 5091 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 ℵcale 9826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-oi 9396 df-har 9443 df-card 9829 df-aleph 9830 |
| This theorem is referenced by: alephord2 9964 alephdom 9969 alephval2 10460 alephiso2 43590 |
| Copyright terms: Public domain | W3C validator |