MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord Structured version   Visualization version   GIF version

Theorem alephord 9901
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
alephord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephord
StepHypRef Expression
1 alephordi 9900 . . 3 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
21adantl 482 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 brsdom 8811 . . 3 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
4 alephon 9895 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
5 alephon 9895 . . . . . . . . 9 (ℵ‘𝐵) ∈ On
6 domtriord 8963 . . . . . . . . 9 (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
74, 5, 6mp2an 689 . . . . . . . 8 ((ℵ‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴))
8 alephordi 9900 . . . . . . . . 9 (𝐴 ∈ On → (𝐵𝐴 → (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
98con3d 152 . . . . . . . 8 (𝐴 ∈ On → (¬ (ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ 𝐵𝐴))
107, 9biimtrid 241 . . . . . . 7 (𝐴 ∈ On → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
1110adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → ¬ 𝐵𝐴))
12 ontri1 6320 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1311, 12sylibrd 258 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → 𝐴𝐵))
14 fveq2 6809 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
15 eqeng 8822 . . . . . . 7 ((ℵ‘𝐴) ∈ On → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
164, 14, 15mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
1716necon3bi 2968 . . . . 5 (¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵) → 𝐴𝐵)
1813, 17anim12d1 610 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → (𝐴𝐵𝐴𝐵)))
19 onelpss 6326 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
2018, 19sylibrd 258 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝐵)) → 𝐴𝐵))
213, 20biimtrid 241 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → 𝐴𝐵))
222, 21impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  wss 3896   class class class wbr 5085  Oncon0 6286  cfv 6463  cen 8776  cdom 8777  csdm 8778  cale 9762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-oi 9337  df-har 9384  df-card 9765  df-aleph 9766
This theorem is referenced by:  alephord2  9902  alephdom  9907  alephval2  10398  alephiso2  41393
  Copyright terms: Public domain W3C validator