MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   GIF version

Theorem grudomon 9845
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)

Proof of Theorem grudomon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4790 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2 eleq1 2838 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
31, 2imbi12d 333 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑥𝑈) ↔ (𝑦𝐵𝑦𝑈)))
43imbi2d 329 . . . . . 6 (𝑥 = 𝑦 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))))
5 breq1 4790 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 eleq1 2838 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
75, 6imbi12d 333 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐵𝑥𝑈) ↔ (𝐴𝐵𝐴𝑈)))
87imbi2d 329 . . . . . 6 (𝑥 = 𝐴 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈))))
9 r19.21v 3109 . . . . . . 7 (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)))
10 simpl1 1227 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑥 ∈ On)
11 vex 3354 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
12 onelss 5908 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 393 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
14 ssdomg 8159 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑦𝑥𝑦𝑥))
1511, 13, 14mpsyl 68 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1610, 15sylan 569 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
17 simplr 752 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐵)
18 domtr 8166 . . . . . . . . . . . . . . 15 ((𝑦𝑥𝑥𝐵) → 𝑦𝐵)
1916, 17, 18syl2anc 573 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝐵)
20 pm2.27 42 . . . . . . . . . . . . . 14 (𝑦𝐵 → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2221ralimdva 3111 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → ∀𝑦𝑥 𝑦𝑈))
23 dfss3 3741 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ ∀𝑦𝑥 𝑦𝑈)
24 domeng 8127 . . . . . . . . . . . . . . . 16 (𝐵𝑈 → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
25243ad2ant3 1129 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
2625biimpa 462 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ∃𝑦(𝑥𝑦𝑦𝐵))
27 simpl2 1229 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑈 ∈ Univ)
28 gruss 9824 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦𝐵) → 𝑦𝑈)
29283expia 1114 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
30293adant1 1124 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
3130adantr 466 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑦𝐵𝑦𝑈))
32 ensym 8162 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦𝑦𝑥)
3332a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑥𝑦𝑦𝑥))
3431, 33anim12d 596 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝑈𝑦𝑥)))
3534ancomsd 451 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑥𝑦𝑦𝐵) → (𝑦𝑈𝑦𝑥)))
3635eximdv 1998 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → ∃𝑦(𝑦𝑈𝑦𝑥)))
37 gruen 9840 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝑦𝑈𝑦𝑥)) → 𝑥𝑈)
38373com23 1120 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ (𝑦𝑈𝑦𝑥) ∧ 𝑥𝑈) → 𝑥𝑈)
39383exp 1112 . . . . . . . . . . . . . . . 16 (𝑈 ∈ Univ → ((𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
4039exlimdv 2013 . . . . . . . . . . . . . . 15 (𝑈 ∈ Univ → (∃𝑦(𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
4127, 36, 40sylsyld 61 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → (𝑥𝑈𝑥𝑈)))
4226, 41mpd 15 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑥𝑈𝑥𝑈))
4323, 42syl5bir 233 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 𝑦𝑈𝑥𝑈))
4422, 43syld 47 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈))
4544ex 397 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈)))
4645com23 86 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈)))
47463expib 1116 . . . . . . . 8 (𝑥 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈))))
4847a2d 29 . . . . . . 7 (𝑥 ∈ On → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
499, 48syl5bi 232 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
504, 8, 49tfis3 7208 . . . . 5 (𝐴 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈)))
5150com3l 89 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵 → (𝐴 ∈ On → 𝐴𝑈)))
5251impr 442 . . 3 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵)) → (𝐴 ∈ On → 𝐴𝑈))
53523impia 1109 . 2 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵) ∧ 𝐴 ∈ On) → 𝐴𝑈)
54533com23 1120 1 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wral 3061  Vcvv 3351  wss 3723   class class class wbr 4787  Oncon0 5865  cen 8110  cdom 8111  Univcgru 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-ord 5868  df-on 5869  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-gru 9819
This theorem is referenced by:  gruina  9846  grur1  9848
  Copyright terms: Public domain W3C validator