MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   GIF version

Theorem grudomon 10761
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)

Proof of Theorem grudomon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5112 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2 eleq1 2822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
31, 2imbi12d 345 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑥𝑈) ↔ (𝑦𝐵𝑦𝑈)))
43imbi2d 341 . . . . . 6 (𝑥 = 𝑦 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))))
5 breq1 5112 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 eleq1 2822 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
75, 6imbi12d 345 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐵𝑥𝑈) ↔ (𝐴𝐵𝐴𝑈)))
87imbi2d 341 . . . . . 6 (𝑥 = 𝐴 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈))))
9 r19.21v 3173 . . . . . . 7 (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)))
10 simpl1 1192 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑥 ∈ On)
11 vex 3451 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
12 onelss 6363 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 408 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
14 ssdomg 8946 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑦𝑥𝑦𝑥))
1511, 13, 14mpsyl 68 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1610, 15sylan 581 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
17 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐵)
18 domtr 8953 . . . . . . . . . . . . . . 15 ((𝑦𝑥𝑥𝐵) → 𝑦𝐵)
1916, 17, 18syl2anc 585 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝐵)
20 pm2.27 42 . . . . . . . . . . . . . 14 (𝑦𝐵 → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2221ralimdva 3161 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → ∀𝑦𝑥 𝑦𝑈))
23 dfss3 3936 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ ∀𝑦𝑥 𝑦𝑈)
24 domeng 8908 . . . . . . . . . . . . . . . 16 (𝐵𝑈 → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
25243ad2ant3 1136 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
2625biimpa 478 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ∃𝑦(𝑥𝑦𝑦𝐵))
27 simpl2 1193 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑈 ∈ Univ)
28 gruss 10740 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦𝐵) → 𝑦𝑈)
29283expia 1122 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
30293adant1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
3130adantr 482 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑦𝐵𝑦𝑈))
32 ensym 8949 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦𝑦𝑥)
3331, 32anim12d1 611 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝑈𝑦𝑥)))
3433ancomsd 467 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑥𝑦𝑦𝐵) → (𝑦𝑈𝑦𝑥)))
3534eximdv 1921 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → ∃𝑦(𝑦𝑈𝑦𝑥)))
36 gruen 10756 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝑦𝑈𝑦𝑥)) → 𝑥𝑈)
37363com23 1127 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ (𝑦𝑈𝑦𝑥) ∧ 𝑥𝑈) → 𝑥𝑈)
38373exp 1120 . . . . . . . . . . . . . . . 16 (𝑈 ∈ Univ → ((𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
3938exlimdv 1937 . . . . . . . . . . . . . . 15 (𝑈 ∈ Univ → (∃𝑦(𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
4027, 35, 39sylsyld 61 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → (𝑥𝑈𝑥𝑈)))
4126, 40mpd 15 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑥𝑈𝑥𝑈))
4223, 41biimtrrid 242 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 𝑦𝑈𝑥𝑈))
4322, 42syld 47 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈))
4443ex 414 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈)))
4544com23 86 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈)))
46453expib 1123 . . . . . . . 8 (𝑥 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈))))
4746a2d 29 . . . . . . 7 (𝑥 ∈ On → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
489, 47biimtrid 241 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
494, 8, 48tfis3 7798 . . . . 5 (𝐴 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈)))
5049com3l 89 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵 → (𝐴 ∈ On → 𝐴𝑈)))
5150impr 456 . . 3 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵)) → (𝐴 ∈ On → 𝐴𝑈))
52513impia 1118 . 2 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵) ∧ 𝐴 ∈ On) → 𝐴𝑈)
53523com23 1127 1 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3061  Vcvv 3447  wss 3914   class class class wbr 5109  Oncon0 6321  cen 8886  cdom 8887  Univcgru 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-gru 10735
This theorem is referenced by:  gruina  10762  grur1  10764
  Copyright terms: Public domain W3C validator