MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   GIF version

Theorem grudomon 10703
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)

Proof of Theorem grudomon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5089 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2 eleq1 2819 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
31, 2imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑥𝑈) ↔ (𝑦𝐵𝑦𝑈)))
43imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))))
5 breq1 5089 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 eleq1 2819 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
75, 6imbi12d 344 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐵𝑥𝑈) ↔ (𝐴𝐵𝐴𝑈)))
87imbi2d 340 . . . . . 6 (𝑥 = 𝐴 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈))))
9 r19.21v 3157 . . . . . . 7 (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)))
10 simpl1 1192 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑥 ∈ On)
11 vex 3440 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
12 onelss 6343 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 406 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
14 ssdomg 8917 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑦𝑥𝑦𝑥))
1511, 13, 14mpsyl 68 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1610, 15sylan 580 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
17 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐵)
18 domtr 8924 . . . . . . . . . . . . . . 15 ((𝑦𝑥𝑥𝐵) → 𝑦𝐵)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝐵)
20 pm2.27 42 . . . . . . . . . . . . . 14 (𝑦𝐵 → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2221ralimdva 3144 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → ∀𝑦𝑥 𝑦𝑈))
23 dfss3 3918 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ ∀𝑦𝑥 𝑦𝑈)
24 domeng 8880 . . . . . . . . . . . . . . . 16 (𝐵𝑈 → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
25243ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
2625biimpa 476 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ∃𝑦(𝑥𝑦𝑦𝐵))
27 simpl2 1193 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑈 ∈ Univ)
28 gruss 10682 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦𝐵) → 𝑦𝑈)
29283expia 1121 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
30293adant1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
3130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑦𝐵𝑦𝑈))
32 ensym 8920 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦𝑦𝑥)
3331, 32anim12d1 610 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝑈𝑦𝑥)))
3433ancomsd 465 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑥𝑦𝑦𝐵) → (𝑦𝑈𝑦𝑥)))
3534eximdv 1918 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → ∃𝑦(𝑦𝑈𝑦𝑥)))
36 gruen 10698 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝑦𝑈𝑦𝑥)) → 𝑥𝑈)
37363com23 1126 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ (𝑦𝑈𝑦𝑥) ∧ 𝑥𝑈) → 𝑥𝑈)
38373exp 1119 . . . . . . . . . . . . . . . 16 (𝑈 ∈ Univ → ((𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
3938exlimdv 1934 . . . . . . . . . . . . . . 15 (𝑈 ∈ Univ → (∃𝑦(𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
4027, 35, 39sylsyld 61 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → (𝑥𝑈𝑥𝑈)))
4126, 40mpd 15 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑥𝑈𝑥𝑈))
4223, 41biimtrrid 243 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 𝑦𝑈𝑥𝑈))
4322, 42syld 47 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈))
4443ex 412 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈)))
4544com23 86 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈)))
46453expib 1122 . . . . . . . 8 (𝑥 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈))))
4746a2d 29 . . . . . . 7 (𝑥 ∈ On → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
489, 47biimtrid 242 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
494, 8, 48tfis3 7783 . . . . 5 (𝐴 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈)))
5049com3l 89 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵 → (𝐴 ∈ On → 𝐴𝑈)))
5150impr 454 . . 3 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵)) → (𝐴 ∈ On → 𝐴𝑈))
52513impia 1117 . 2 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵) ∧ 𝐴 ∈ On) → 𝐴𝑈)
53523com23 1126 1 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5086  Oncon0 6301  cen 8861  cdom 8862  Univcgru 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-gru 10677
This theorem is referenced by:  gruina  10704  grur1  10706
  Copyright terms: Public domain W3C validator