![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
Ref | Expression |
---|---|
fun | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnun 6664 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
2 | 1 | expcom 415 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵))) |
3 | rnun 6146 | . . . . 5 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
4 | unss12 4183 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶 ∪ 𝐷)) | |
5 | 3, 4 | eqsstrid 4031 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)) |
6 | 2, 5 | anim12d1 611 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷)) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)))) |
7 | df-f 6548 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
8 | df-f 6548 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) | |
9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷))) |
10 | an4 655 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) | |
11 | 9, 10 | bitri 275 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) |
12 | df-f 6548 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) | |
13 | 6, 11, 12 | 3imtr4g 296 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷))) |
14 | 13 | impcom 409 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 ran crn 5678 Fn wfn 6539 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: fun2 6755 ftpg 7154 fsnunf 7183 ralxpmap 8890 hashfxnn0 14297 cats1un 14671 pwssplit1 20670 axlowdimlem10 28209 wlkp1 28938 padct 31944 eulerpartlemt 33370 sseqf 33391 poimirlem3 36491 poimirlem16 36504 poimirlem19 36507 poimirlem22 36510 poimirlem23 36511 poimirlem24 36512 poimirlem25 36513 poimirlem28 36516 poimirlem29 36517 poimirlem31 36519 mapfzcons 41454 diophrw 41497 diophren 41551 pwssplit4 41831 aacllem 47848 |
Copyright terms: Public domain | W3C validator |