Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
Ref | Expression |
---|---|
fun | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnun 6543 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
2 | 1 | expcom 414 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵))) |
3 | rnun 6048 | . . . . 5 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
4 | unss12 4121 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶 ∪ 𝐷)) | |
5 | 3, 4 | eqsstrid 3974 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)) |
6 | 2, 5 | anim12d1 610 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷)) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)))) |
7 | df-f 6436 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
8 | df-f 6436 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) | |
9 | 7, 8 | anbi12i 627 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷))) |
10 | an4 653 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) | |
11 | 9, 10 | bitri 274 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) |
12 | df-f 6436 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) | |
13 | 6, 11, 12 | 3imtr4g 296 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷))) |
14 | 13 | impcom 408 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 ran crn 5591 Fn wfn 6427 ⟶wf 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6434 df-fn 6435 df-f 6436 |
This theorem is referenced by: fun2 6635 ftpg 7025 fsnunf 7054 ralxpmap 8667 hashfxnn0 14049 cats1un 14432 pwssplit1 20319 axlowdimlem10 27317 wlkp1 28046 padct 31050 eulerpartlemt 32334 sseqf 32355 poimirlem3 35776 poimirlem16 35789 poimirlem19 35792 poimirlem22 35795 poimirlem23 35796 poimirlem24 35797 poimirlem25 35798 poimirlem28 35801 poimirlem29 35802 poimirlem31 35804 mapfzcons 40535 diophrw 40578 diophren 40632 pwssplit4 40911 aacllem 46474 |
Copyright terms: Public domain | W3C validator |