MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun Structured version   Visualization version   GIF version

Theorem fun 6632
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))

Proof of Theorem fun
StepHypRef Expression
1 fnun 6541 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
21expcom 413 . . . 4 ((𝐴𝐵) = ∅ → ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐴𝐵)))
3 rnun 6046 . . . . 5 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
4 unss12 4120 . . . . 5 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶𝐷))
53, 4eqsstrid 3973 . . . 4 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → ran (𝐹𝐺) ⊆ (𝐶𝐷))
62, 5anim12d1 609 . . 3 ((𝐴𝐵) = ∅ → (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)) → ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷))))
7 df-f 6434 . . . . 5 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
8 df-f 6434 . . . . 5 (𝐺:𝐵𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷))
97, 8anbi12i 626 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)))
10 an4 652 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
119, 10bitri 274 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
12 df-f 6434 . . 3 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷)))
136, 11, 123imtr4g 295 . 2 ((𝐴𝐵) = ∅ → ((𝐹:𝐴𝐶𝐺:𝐵𝐷) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷)))
1413impcom 407 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cun 3889  cin 3890  wss 3891  c0 4261  ran crn 5589   Fn wfn 6425  wf 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  fun2  6633  ftpg  7022  fsnunf  7051  ralxpmap  8658  hashfxnn0  14032  cats1un  14415  pwssplit1  20302  axlowdimlem10  27300  wlkp1  28029  padct  31033  eulerpartlemt  32317  sseqf  32338  poimirlem3  35759  poimirlem16  35772  poimirlem19  35775  poimirlem22  35778  poimirlem23  35779  poimirlem24  35780  poimirlem25  35781  poimirlem28  35784  poimirlem29  35785  poimirlem31  35787  mapfzcons  40518  diophrw  40561  diophren  40615  pwssplit4  40894  aacllem  46457
  Copyright terms: Public domain W3C validator