| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun | Structured version Visualization version GIF version | ||
| Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
| Ref | Expression |
|---|---|
| fun | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnun 6635 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵))) |
| 3 | rnun 6121 | . . . . 5 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
| 4 | unss12 4154 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶 ∪ 𝐷)) | |
| 5 | 3, 4 | eqsstrid 3988 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)) |
| 6 | 2, 5 | anim12d1 610 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷)) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)))) |
| 7 | df-f 6518 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 8 | df-f 6518 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷))) |
| 10 | an4 656 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) |
| 12 | df-f 6518 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) | |
| 13 | 6, 11, 12 | 3imtr4g 296 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷))) |
| 14 | 13 | impcom 407 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fun2 6726 ftpg 7131 fsnunf 7162 ralxpmap 8872 hashfxnn0 14309 cats1un 14693 pwssplit1 20973 axlowdimlem10 28885 wlkp1 29616 padct 32650 eulerpartlemt 34369 sseqf 34390 poimirlem3 37624 poimirlem16 37637 poimirlem19 37640 poimirlem22 37643 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem28 37649 poimirlem29 37650 poimirlem31 37652 mapfzcons 42711 diophrw 42754 diophren 42808 pwssplit4 43085 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |