![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
Ref | Expression |
---|---|
fun | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnun 6683 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
2 | 1 | expcom 413 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵))) |
3 | rnun 6168 | . . . . 5 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
4 | unss12 4198 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶 ∪ 𝐷)) | |
5 | 3, 4 | eqsstrid 4044 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)) |
6 | 2, 5 | anim12d1 610 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷)) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)))) |
7 | df-f 6567 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
8 | df-f 6567 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) | |
9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷))) |
10 | an4 656 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) | |
11 | 9, 10 | bitri 275 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) |
12 | df-f 6567 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) | |
13 | 6, 11, 12 | 3imtr4g 296 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷))) |
14 | 13 | impcom 407 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ran crn 5690 Fn wfn 6558 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fun2 6772 ftpg 7176 fsnunf 7205 ralxpmap 8935 hashfxnn0 14373 cats1un 14756 pwssplit1 21076 axlowdimlem10 28981 wlkp1 29714 padct 32737 eulerpartlemt 34353 sseqf 34374 poimirlem3 37610 poimirlem16 37623 poimirlem19 37626 poimirlem22 37629 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem28 37635 poimirlem29 37636 poimirlem31 37638 mapfzcons 42704 diophrw 42747 diophren 42801 pwssplit4 43078 aacllem 49032 |
Copyright terms: Public domain | W3C validator |