| Step | Hyp | Ref
| Expression |
| 1 | | 1stctop 23451 |
. . 3
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
| 2 | | resttop 23168 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| 3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| 4 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 5 | 4 | restuni2 23175 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
| 6 | 1, 5 | sylan 580 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
| 7 | 6 | eleq2d 2827 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) ↔ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴))) |
| 8 | 7 | biimpar 477 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) |
| 9 | | simpl 482 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → 𝐽 ∈
1stω) |
| 10 | | elinel2 4202 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) |
| 11 | 4 | 1stcclb 23452 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈ ∪ 𝐽)
→ ∃𝑡 ∈
𝒫 𝐽(𝑡 ≼ ω ∧
∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
| 12 | 9, 10, 11 | syl2an 596 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
| 13 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈
1stω) |
| 14 | | elpwi 4607 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝒫 𝐽 → 𝑡 ⊆ 𝐽) |
| 15 | 14 | ad2antrl 728 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ⊆ 𝐽) |
| 16 | | ssrest 23184 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑡 ⊆ 𝐽) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
| 17 | 13, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
| 18 | | ovex 7464 |
. . . . . . . 8
⊢ (𝐽 ↾t 𝐴) ∈ V |
| 19 | 18 | elpw2 5334 |
. . . . . . 7
⊢ ((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ↔ (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
| 20 | 17, 19 | sylibr 234 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴)) |
| 21 | | vex 3484 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
| 22 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐴 ∈ 𝑉) |
| 23 | | restval 17471 |
. . . . . . . 8
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
| 24 | 21, 22, 23 | sylancr 587 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
| 25 | | simprrl 781 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ≼ ω) |
| 26 | | 1stcrestlem 23460 |
. . . . . . . 8
⊢ (𝑡 ≼ ω → ran
(𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
| 27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
| 28 | 24, 27 | eqbrtrd 5165 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ≼ ω) |
| 29 | 1 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈ Top) |
| 30 | | elrest 17472 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
| 31 | 29, 22, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
| 32 | | r19.29 3114 |
. . . . . . . . . . . 12
⊢
((∀𝑎 ∈
𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → ∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴))) |
| 33 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 34 | 33 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐴)) |
| 35 | 34 | ancld 550 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴))) |
| 36 | | elin 3967 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (𝑦 ∩ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 37 | 35, 36 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ (𝑦 ∩ 𝐴))) |
| 38 | | ssrin 4242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ⊆ 𝑎 → (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)) |
| 39 | 37, 38 | anim12d1 610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
| 40 | 39 | reximdv 3170 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
| 41 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
| 42 | 41 | inex1 5317 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∩ 𝐴) ∈ V |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝑡) → (𝑦 ∩ 𝐴) ∈ V) |
| 44 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝐴 ∈ 𝑉) |
| 45 | | elrest 17472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
| 46 | 21, 44, 45 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
| 47 | | eleq2 2830 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (𝑦 ∩ 𝐴))) |
| 48 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑤 ⊆ (𝑎 ∩ 𝐴) ↔ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴))) |
| 49 | 47, 48 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑦 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑤 = (𝑦 ∩ 𝐴)) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
| 51 | 43, 46, 50 | rexxfr2d 5411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
| 52 | 40, 51 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
| 53 | 52 | expr 456 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
| 54 | 53 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
| 55 | 54 | imim2d 57 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (𝑥 ∈ 𝑎 → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))))) |
| 56 | 55 | imp4b 421 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
| 57 | | eleq2 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑎 ∩ 𝐴))) |
| 58 | | elin 3967 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑎 ∩ 𝐴) ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴)) |
| 59 | 57, 58 | bitrdi 287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴))) |
| 60 | | sseq2 4010 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ (𝑎 ∩ 𝐴))) |
| 61 | 60 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
| 62 | 61 | rexbidv 3179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
| 63 | 59, 62 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
| 64 | 56, 63 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 65 | 64 | expimpd 453 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 66 | 65 | rexlimdva 3155 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 67 | 32, 66 | syl5 34 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 68 | 67 | expd 415 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 69 | 68 | impr 454 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 70 | 69 | adantrrl 724 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 71 | 31, 70 | sylbid 240 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 72 | 71 | ralrimiv 3145 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 73 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (𝑦 ≼ ω ↔ (𝑡 ↾t 𝐴) ≼ ω)) |
| 74 | | rexeq 3322 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 75 | 74 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 76 | 75 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 77 | 73, 76 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 78 | 77 | rspcev 3622 |
. . . . . 6
⊢ (((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ∧ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 79 | 20, 28, 72, 78 | syl12anc 837 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 80 | 12, 79 | rexlimddv 3161 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 81 | 8, 80 | syldan 591 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 82 | 81 | ralrimiva 3146 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ ∪ (𝐽
↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 83 | | eqid 2737 |
. . 3
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
| 84 | 83 | is1stc2 23450 |
. 2
⊢ ((𝐽 ↾t 𝐴) ∈ 1stω
↔ ((𝐽
↾t 𝐴)
∈ Top ∧ ∀𝑥
∈ ∪ (𝐽 ↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 85 | 3, 82, 84 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈
1stω) |