Step | Hyp | Ref
| Expression |
1 | | 1stctop 21655 |
. . 3
⊢ (𝐽 ∈ 1st𝜔
→ 𝐽 ∈
Top) |
2 | | resttop 21372 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
3 | 1, 2 | sylan 575 |
. 2
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
4 | | eqid 2778 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
5 | 4 | restuni2 21379 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
6 | 1, 5 | sylan 575 |
. . . . . 6
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
7 | 6 | eleq2d 2845 |
. . . . 5
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) ↔ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴))) |
8 | 7 | biimpar 471 |
. . . 4
⊢ (((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) |
9 | | simpl 476 |
. . . . . 6
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → 𝐽 ∈
1st𝜔) |
10 | | inss2 4054 |
. . . . . . 7
⊢ (𝐴 ∩ ∪ 𝐽)
⊆ ∪ 𝐽 |
11 | 10 | sseli 3817 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) |
12 | 4 | 1stcclb 21656 |
. . . . . 6
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝑥 ∈ ∪ 𝐽)
→ ∃𝑡 ∈
𝒫 𝐽(𝑡 ≼ ω ∧
∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
13 | 9, 11, 12 | syl2an 589 |
. . . . 5
⊢ (((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
14 | | simplll 765 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈
1st𝜔) |
15 | | elpwi 4389 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝒫 𝐽 → 𝑡 ⊆ 𝐽) |
16 | 15 | ad2antrl 718 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ⊆ 𝐽) |
17 | | ssrest 21388 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝑡 ⊆ 𝐽) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
18 | 14, 16, 17 | syl2anc 579 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
19 | | ovex 6954 |
. . . . . . . 8
⊢ (𝐽 ↾t 𝐴) ∈ V |
20 | 19 | elpw2 5062 |
. . . . . . 7
⊢ ((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ↔ (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
21 | 18, 20 | sylibr 226 |
. . . . . 6
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴)) |
22 | | vex 3401 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
23 | | simpllr 766 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐴 ∈ 𝑉) |
24 | | restval 16473 |
. . . . . . . 8
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
25 | 22, 23, 24 | sylancr 581 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
26 | | simprrl 771 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ≼ ω) |
27 | | 1stcrestlem 21664 |
. . . . . . . 8
⊢ (𝑡 ≼ ω → ran
(𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
29 | 25, 28 | eqbrtrd 4908 |
. . . . . 6
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ≼ ω) |
30 | 1 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈ Top) |
31 | | elrest 16474 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
32 | 30, 23, 31 | syl2anc 579 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
33 | | r19.29 3258 |
. . . . . . . . . . . 12
⊢
((∀𝑎 ∈
𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → ∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴))) |
34 | | simprr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
35 | 34 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐴)) |
36 | 35 | ancld 546 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴))) |
37 | | elin 4019 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (𝑦 ∩ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴)) |
38 | 36, 37 | syl6ibr 244 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ (𝑦 ∩ 𝐴))) |
39 | | ssrin 4058 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ⊆ 𝑎 → (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)) |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑦 ⊆ 𝑎 → (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴))) |
41 | 38, 40 | anim12d 602 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
42 | 41 | reximdv 3197 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
43 | | vex 3401 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
44 | 43 | inex1 5036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∩ 𝐴) ∈ V |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝑡) → (𝑦 ∩ 𝐴) ∈ V) |
46 | | simp-4r 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝐴 ∈ 𝑉) |
47 | | elrest 16474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
48 | 22, 46, 47 | sylancr 581 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
49 | | eleq2 2848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (𝑦 ∩ 𝐴))) |
50 | | sseq1 3845 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑤 ⊆ (𝑎 ∩ 𝐴) ↔ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴))) |
51 | 49, 50 | anbi12d 624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑦 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
52 | 51 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑤 = (𝑦 ∩ 𝐴)) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
53 | 45, 48, 52 | rexxfr2d 5123 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
54 | 42, 53 | sylibrd 251 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
55 | 54 | expr 450 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
56 | 55 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
57 | 56 | imim2d 57 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (𝑥 ∈ 𝑎 → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))))) |
58 | 57 | imp4b 414 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
59 | | eleq2 2848 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑎 ∩ 𝐴))) |
60 | | elin 4019 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑎 ∩ 𝐴) ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴)) |
61 | 59, 60 | syl6bb 279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴))) |
62 | | sseq2 3846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ (𝑎 ∩ 𝐴))) |
63 | 62 | anbi2d 622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
64 | 63 | rexbidv 3237 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
65 | 61, 64 | imbi12d 336 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
66 | 58, 65 | syl5ibrcom 239 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
67 | 66 | expimpd 447 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1st𝜔 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
68 | 67 | rexlimdva 3213 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
69 | 33, 68 | syl5 34 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
70 | 69 | expd 406 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
71 | 70 | impr 448 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
72 | 71 | adantrrl 714 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
73 | 32, 72 | sylbid 232 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
74 | 73 | ralrimiv 3147 |
. . . . . 6
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
75 | | breq1 4889 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (𝑦 ≼ ω ↔ (𝑡 ↾t 𝐴) ≼ ω)) |
76 | | rexeq 3331 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
77 | 76 | imbi2d 332 |
. . . . . . . . 9
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
78 | 77 | ralbidv 3168 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
79 | 75, 78 | anbi12d 624 |
. . . . . . 7
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
80 | 79 | rspcev 3511 |
. . . . . 6
⊢ (((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ∧ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
81 | 21, 29, 74, 80 | syl12anc 827 |
. . . . 5
⊢ ((((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
82 | 13, 81 | rexlimddv 3218 |
. . . 4
⊢ (((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
83 | 8, 82 | syldan 585 |
. . 3
⊢ (((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
84 | 83 | ralrimiva 3148 |
. 2
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ ∪ (𝐽
↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
85 | | eqid 2778 |
. . 3
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
86 | 85 | is1stc2 21654 |
. 2
⊢ ((𝐽 ↾t 𝐴) ∈ 1st𝜔
↔ ((𝐽
↾t 𝐴)
∈ Top ∧ ∀𝑥
∈ ∪ (𝐽 ↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
87 | 3, 84, 86 | sylanbrc 578 |
1
⊢ ((𝐽 ∈ 1st𝜔
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈
1st𝜔) |