Step | Hyp | Ref
| Expression |
1 | | 1stctop 22603 |
. . 3
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
2 | | resttop 22320 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
4 | | eqid 2739 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
5 | 4 | restuni2 22327 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
6 | 1, 5 | sylan 580 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪
(𝐽 ↾t
𝐴)) |
7 | 6 | eleq2d 2825 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) ↔ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴))) |
8 | 7 | biimpar 478 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) |
9 | | simpl 483 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → 𝐽 ∈
1stω) |
10 | | elinel2 4131 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) |
11 | 4 | 1stcclb 22604 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈ ∪ 𝐽)
→ ∃𝑡 ∈
𝒫 𝐽(𝑡 ≼ ω ∧
∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
12 | 9, 10, 11 | syl2an 596 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) |
13 | | simplll 772 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈
1stω) |
14 | | elpwi 4543 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝒫 𝐽 → 𝑡 ⊆ 𝐽) |
15 | 14 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ⊆ 𝐽) |
16 | | ssrest 22336 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑡 ⊆ 𝐽) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
17 | 13, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
18 | | ovex 7317 |
. . . . . . . 8
⊢ (𝐽 ↾t 𝐴) ∈ V |
19 | 18 | elpw2 5270 |
. . . . . . 7
⊢ ((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ↔ (𝑡 ↾t 𝐴) ⊆ (𝐽 ↾t 𝐴)) |
20 | 17, 19 | sylibr 233 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴)) |
21 | | vex 3437 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
22 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐴 ∈ 𝑉) |
23 | | restval 17146 |
. . . . . . . 8
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
24 | 21, 22, 23 | sylancr 587 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) = ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴))) |
25 | | simprrl 778 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝑡 ≼ ω) |
26 | | 1stcrestlem 22612 |
. . . . . . . 8
⊢ (𝑡 ≼ ω → ran
(𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ran (𝑣 ∈ 𝑡 ↦ (𝑣 ∩ 𝐴)) ≼ ω) |
28 | 24, 27 | eqbrtrd 5097 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑡 ↾t 𝐴) ≼ ω) |
29 | 1 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → 𝐽 ∈ Top) |
30 | | elrest 17147 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
31 | 29, 22, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴))) |
32 | | r19.29 3185 |
. . . . . . . . . . . 12
⊢
((∀𝑎 ∈
𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → ∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴))) |
33 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
34 | 33 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐴)) |
35 | 34 | ancld 551 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴))) |
36 | | elin 3904 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (𝑦 ∩ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴)) |
37 | 35, 36 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → 𝑥 ∈ (𝑦 ∩ 𝐴))) |
38 | | ssrin 4168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ⊆ 𝑎 → (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)) |
39 | 37, 38 | anim12d1 610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
40 | 39 | reximdv 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
41 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
42 | 41 | inex1 5242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∩ 𝐴) ∈ V |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝑡) → (𝑦 ∩ 𝐴) ∈ V) |
44 | | simp-4r 781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → 𝐴 ∈ 𝑉) |
45 | | elrest 17147 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
46 | 21, 44, 45 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (𝑤 ∈ (𝑡 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑡 𝑤 = (𝑦 ∩ 𝐴))) |
47 | | eleq2 2828 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (𝑦 ∩ 𝐴))) |
48 | | sseq1 3947 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑦 ∩ 𝐴) → (𝑤 ⊆ (𝑎 ∩ 𝐴) ↔ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴))) |
49 | 47, 48 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑦 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) ∧ 𝑤 = (𝑦 ∩ 𝐴)) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
51 | 43, 46, 50 | rexxfr2d 5335 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)) ↔ ∃𝑦 ∈ 𝑡 (𝑥 ∈ (𝑦 ∩ 𝐴) ∧ (𝑦 ∩ 𝐴) ⊆ (𝑎 ∩ 𝐴)))) |
52 | 40, 51 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝐴)) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
53 | 52 | expr 457 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
54 | 53 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎) → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
55 | 54 | imim2d 57 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (𝑥 ∈ 𝑎 → (𝑥 ∈ 𝐴 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))))) |
56 | 55 | imp4b 422 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
57 | | eleq2 2828 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑎 ∩ 𝐴))) |
58 | | elin 3904 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑎 ∩ 𝐴) ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴)) |
59 | 57, 58 | bitrdi 287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴))) |
60 | | sseq2 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ (𝑎 ∩ 𝐴))) |
61 | 60 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
62 | 61 | rexbidv 3227 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑎 ∩ 𝐴) → (∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴)))) |
63 | 59, 62 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑎 ∩ 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ((𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝐴))))) |
64 | 56, 63 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) ∧ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))) → (𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
65 | 64 | expimpd 454 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎 ∈ 𝐽) → (((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
66 | 65 | rexlimdva 3214 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎 ∈ 𝐽 ((𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
67 | 32, 66 | syl5 34 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) ∧ ∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴)) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
68 | 67 | expd 416 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
69 | 68 | impr 455 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎)))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
70 | 69 | adantrrl 721 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (∃𝑎 ∈ 𝐽 𝑧 = (𝑎 ∩ 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
71 | 31, 70 | sylbid 239 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → (𝑧 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
72 | 71 | ralrimiv 3103 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
73 | | breq1 5078 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (𝑦 ≼ ω ↔ (𝑡 ↾t 𝐴) ≼ ω)) |
74 | | rexeq 3344 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
75 | 74 | imbi2d 341 |
. . . . . . . . 9
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
76 | 75 | ralbidv 3113 |
. . . . . . . 8
⊢ (𝑦 = (𝑡 ↾t 𝐴) → (∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
77 | 73, 76 | anbi12d 631 |
. . . . . . 7
⊢ (𝑦 = (𝑡 ↾t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
78 | 77 | rspcev 3562 |
. . . . . 6
⊢ (((𝑡 ↾t 𝐴) ∈ 𝒫 (𝐽 ↾t 𝐴) ∧ ((𝑡 ↾t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ (𝑡 ↾t 𝐴)(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
79 | 20, 28, 72, 78 | syl12anc 834 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎 ∈ 𝐽 (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑡 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
80 | 12, 79 | rexlimddv 3221 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐴 ∩ ∪ 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
81 | 8, 80 | syldan 591 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ ∪ (𝐽 ↾t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
82 | 81 | ralrimiva 3104 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ ∪ (𝐽
↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
83 | | eqid 2739 |
. . 3
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
84 | 83 | is1stc2 22602 |
. 2
⊢ ((𝐽 ↾t 𝐴) ∈ 1stω
↔ ((𝐽
↾t 𝐴)
∈ Top ∧ ∀𝑥
∈ ∪ (𝐽 ↾t 𝐴)∃𝑦 ∈ 𝒫 (𝐽 ↾t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐴)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
85 | 3, 82, 84 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈
1stω) |