MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrest Structured version   Visualization version   GIF version

Theorem 1stcrest 22613
Description: A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stcrest ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1stω)

Proof of Theorem 1stcrest
Dummy variables 𝑡 𝑎 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 22603 . . 3 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
2 resttop 22320 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
4 eqid 2739 . . . . . . . 8 𝐽 = 𝐽
54restuni2 22327 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
61, 5sylan 580 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
76eleq2d 2825 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → (𝑥 ∈ (𝐴 𝐽) ↔ 𝑥 (𝐽t 𝐴)))
87biimpar 478 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → 𝑥 ∈ (𝐴 𝐽))
9 simpl 483 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → 𝐽 ∈ 1stω)
10 elinel2 4131 . . . . . 6 (𝑥 ∈ (𝐴 𝐽) → 𝑥 𝐽)
1141stcclb 22604 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 𝐽) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
129, 10, 11syl2an 596 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
13 simplll 772 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ 1stω)
14 elpwi 4543 . . . . . . . . 9 (𝑡 ∈ 𝒫 𝐽𝑡𝐽)
1514ad2antrl 725 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡𝐽)
16 ssrest 22336 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑡𝐽) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
1713, 15, 16syl2anc 584 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
18 ovex 7317 . . . . . . . 8 (𝐽t 𝐴) ∈ V
1918elpw2 5270 . . . . . . 7 ((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ↔ (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
2017, 19sylibr 233 . . . . . 6 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴))
21 vex 3437 . . . . . . . 8 𝑡 ∈ V
22 simpllr 773 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐴𝑉)
23 restval 17146 . . . . . . . 8 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
2421, 22, 23sylancr 587 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
25 simprrl 778 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡 ≼ ω)
26 1stcrestlem 22612 . . . . . . . 8 (𝑡 ≼ ω → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2725, 26syl 17 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2824, 27eqbrtrd 5097 . . . . . 6 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ≼ ω)
291ad3antrrr 727 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ Top)
30 elrest 17147 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
3129, 22, 30syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
32 r19.29 3185 . . . . . . . . . . . 12 ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → ∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)))
33 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝑥𝐴)
3433a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥𝐴))
3534ancld 551 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦 → (𝑥𝑦𝑥𝐴)))
36 elin 3904 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑦𝐴) ↔ (𝑥𝑦𝑥𝐴))
3735, 36syl6ibr 251 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥 ∈ (𝑦𝐴)))
38 ssrin 4168 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑎 → (𝑦𝐴) ⊆ (𝑎𝐴))
3937, 38anim12d1 610 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → ((𝑥𝑦𝑦𝑎) → (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
4039reximdv 3203 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
41 vex 3437 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
4241inex1 5242 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴) ∈ V
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑦𝑡) → (𝑦𝐴) ∈ V)
44 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝐴𝑉)
45 elrest 17147 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
4621, 44, 45sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
47 eleq2 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑥𝑤𝑥 ∈ (𝑦𝐴)))
48 sseq1 3947 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑤 ⊆ (𝑎𝐴) ↔ (𝑦𝐴) ⊆ (𝑎𝐴)))
4947, 48anbi12d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝑦𝐴) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5049adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑤 = (𝑦𝐴)) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5143, 46, 50rexxfr2d 5335 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5240, 51sylibrd 258 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
5352expr 457 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (𝑥𝐴 → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5453com23 86 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5554imim2d 57 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (𝑥𝑎 → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))))
5655imp4b 422 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
57 eleq2 2828 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → (𝑥𝑧𝑥 ∈ (𝑎𝐴)))
58 elin 3904 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑎𝐴) ↔ (𝑥𝑎𝑥𝐴))
5957, 58bitrdi 287 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (𝑥𝑧 ↔ (𝑥𝑎𝑥𝐴)))
60 sseq2 3948 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎𝐴) → (𝑤𝑧𝑤 ⊆ (𝑎𝐴)))
6160anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6261rexbidv 3227 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6359, 62imbi12d 345 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐴) → ((𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)) ↔ ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
6456, 63syl5ibrcom 246 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → (𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6564expimpd 454 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6665rexlimdva 3214 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6732, 66syl5 34 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6867expd 416 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
6968impr 455 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7069adantrrl 721 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7131, 70sylbid 239 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7271ralrimiv 3103 . . . . . 6 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
73 breq1 5078 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (𝑦 ≼ ω ↔ (𝑡t 𝐴) ≼ ω))
74 rexeq 3344 . . . . . . . . . 10 (𝑦 = (𝑡t 𝐴) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
7574imbi2d 341 . . . . . . . . 9 (𝑦 = (𝑡t 𝐴) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7675ralbidv 3113 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7773, 76anbi12d 631 . . . . . . 7 (𝑦 = (𝑡t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
7877rspcev 3562 . . . . . 6 (((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ∧ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
7920, 28, 72, 78syl12anc 834 . . . . 5 ((((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8012, 79rexlimddv 3221 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
818, 80syldan 591 . . 3 (((𝐽 ∈ 1stω ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8281ralrimiva 3104 . 2 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
83 eqid 2739 . . 3 (𝐽t 𝐴) = (𝐽t 𝐴)
8483is1stc2 22602 . 2 ((𝐽t 𝐴) ∈ 1stω ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
853, 82, 84sylanbrc 583 1 ((𝐽 ∈ 1stω ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wral 3065  wrex 3066  Vcvv 3433  cin 3887  wss 3888  𝒫 cpw 4534   cuni 4840   class class class wbr 5075  cmpt 5158  ran crn 5591  (class class class)co 7284  ωcom 7721  cdom 8740  t crest 17140  Topctop 22051  1stωc1stc 22597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-fin 8746  df-fi 9179  df-card 9706  df-acn 9709  df-rest 17142  df-topgen 17163  df-top 22052  df-topon 22069  df-bases 22105  df-1stc 22599
This theorem is referenced by:  lly1stc  22656
  Copyright terms: Public domain W3C validator