MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem13 Structured version   Visualization version   GIF version

Theorem frrlem13 8039
Description: Lemma for well-founded recursion. Assuming that 𝑆 is a subset of 𝐴 and that 𝑧 is 𝑅-minimal, then 𝐶 is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
Assertion
Ref Expression
frrlem13 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem13
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4041 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
2 frrlem13.8 . . . . . 6 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
31, 2sylan2 596 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆 ∈ V)
43adantrr 717 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆 ∈ V)
5 inex1g 5212 . . . . 5 (𝑆 ∈ V → (𝑆 ∩ dom 𝐹) ∈ V)
6 snex 5324 . . . . 5 {𝑧} ∈ V
7 unexg 7534 . . . . 5 (((𝑆 ∩ dom 𝐹) ∈ V ∧ {𝑧} ∈ V) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
85, 6, 7sylancl 589 . . . 4 (𝑆 ∈ V → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
94, 8syl 17 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
10 frrlem11.1 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
11 frrlem11.2 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
12 frrlem11.3 . . . . 5 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
13 frrlem11.4 . . . . 5 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1410, 11, 12, 13frrlem11 8037 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
1514adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
16 inss1 4143 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ 𝑆
17 frrlem13.9 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑆𝐴)
181, 17sylan2 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆𝐴)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆𝐴)
2016, 19sstrid 3912 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑆 ∩ dom 𝐹) ⊆ 𝐴)
211adantl 485 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧𝐴)
2221adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧𝐴)
2322snssd 4722 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → {𝑧} ⊆ 𝐴)
2420, 23unssd 4100 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴)
25 elun 4063 . . . . . . . . 9 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
26 elin 3882 . . . . . . . . . 10 (𝑤 ∈ (𝑆 ∩ dom 𝐹) ↔ (𝑤𝑆𝑤 ∈ dom 𝐹))
27 velsn 4557 . . . . . . . . . 10 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
2826, 27orbi12i 915 . . . . . . . . 9 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
2925, 28bitri 278 . . . . . . . 8 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
30 frrlem12.7 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
311, 30sylan2 596 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
33 rsp 3127 . . . . . . . . . . . 12 (∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3432, 33syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3510, 11frrlem8 8034 . . . . . . . . . . 11 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
3634, 35anim12d1 613 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)))
37 ssin 4145 . . . . . . . . . 10 ((Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
3836, 37syl6ib 254 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
39 frrlem12.6 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
401, 39sylan2 596 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
4140adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
42 preddif 6187 . . . . . . . . . . . . . . . 16 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧))
4342eqeq1i 2742 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
44 ssdif0 4278 . . . . . . . . . . . . . . 15 (Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧) ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
4543, 44sylbb2 241 . . . . . . . . . . . . . 14 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧))
46 predss 6167 . . . . . . . . . . . . . 14 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
4745, 46sstrdi 3913 . . . . . . . . . . . . 13 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4847adantl 485 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4948adantl 485 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
5041, 49ssind 4147 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹))
51 predeq3 6164 . . . . . . . . . . 11 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
5251sseq1d 3932 . . . . . . . . . 10 (𝑤 = 𝑧 → (Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹)))
5350, 52syl5ibrcom 250 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5438, 53jaod 859 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5529, 54syl5bi 245 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5655imp 410 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
57 ssun1 4086 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})
5856, 57sstrdi 3913 . . . . 5 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
5958ralrimiva 3105 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
6024, 59jca 515 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
61 frrlem12.5 . . . . . . 7 (𝜑𝑅 Fr 𝐴)
6210, 11, 12, 13, 61, 39, 30frrlem12 8038 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
63623expa 1120 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6463ralrimiva 3105 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6564adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
66 fneq2 6471 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶 Fn 𝑡𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
67 sseq1 3926 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝑡𝐴 ↔ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴))
68 sseq2 3927 . . . . . . . 8 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
6968raleqbi1dv 3317 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
7067, 69anbi12d 634 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ↔ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))))
71 raleq 3319 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7266, 70, 713anbi123d 1438 . . . . 5 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7372spcegv 3512 . . . 4 (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V → ((𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7473imp 410 . . 3 ((((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V ∧ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
759, 15, 60, 65, 74syl13anc 1374 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7610, 11, 12frrlem9 8035 . . . . . 6 (𝜑 → Fun 𝐹)
77 resfunexg 7031 . . . . . 6 ((Fun 𝐹𝑆 ∈ V) → (𝐹𝑆) ∈ V)
7876, 4, 77syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐹𝑆) ∈ V)
79 snex 5324 . . . . 5 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V
80 unexg 7534 . . . . 5 (((𝐹𝑆) ∈ V ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8178, 79, 80sylancl 589 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8213, 81eqeltrid 2842 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 ∈ V)
83 fneq1 6470 . . . . . 6 (𝑐 = 𝐶 → (𝑐 Fn 𝑡𝐶 Fn 𝑡))
84 fveq1 6716 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑤) = (𝐶𝑤))
85 reseq1 5845 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))
8685oveq2d 7229 . . . . . . . 8 (𝑐 = 𝐶 → (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
8784, 86eqeq12d 2753 . . . . . . 7 (𝑐 = 𝐶 → ((𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8887ralbidv 3118 . . . . . 6 (𝑐 = 𝐶 → (∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8983, 883anbi13d 1440 . . . . 5 (𝑐 = 𝐶 → ((𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9089exbidv 1929 . . . 4 (𝑐 = 𝐶 → (∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9110frrlem1 8027 . . . 4 𝐵 = {𝑐 ∣ ∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))))}
9290, 91elab2g 3589 . . 3 (𝐶 ∈ V → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9382, 92syl 17 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9475, 93mpbird 260 1 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wral 3061  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  {csn 4541  cop 4547   class class class wbr 5053   Fr wfr 5506  dom cdm 5551  cres 5553  Predcpred 6159  Fun wfun 6374   Fn wfn 6375  cfv 6380  (class class class)co 7213  frecscfrecs 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-fr 5509  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-frecs 8023
This theorem is referenced by:  frrlem14  8040
  Copyright terms: Public domain W3C validator