MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem13 Structured version   Visualization version   GIF version

Theorem frrlem13 8297
Description: Lemma for well-founded recursion. Assuming that 𝑆 is a subset of 𝐴 and that 𝑧 is 𝑅-minimal, then 𝐶 is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
Assertion
Ref Expression
frrlem13 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem13
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4106 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
2 frrlem13.8 . . . . . 6 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
31, 2sylan2 593 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆 ∈ V)
43adantrr 717 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆 ∈ V)
5 inex1g 5289 . . . . 5 (𝑆 ∈ V → (𝑆 ∩ dom 𝐹) ∈ V)
6 snex 5406 . . . . 5 {𝑧} ∈ V
7 unexg 7737 . . . . 5 (((𝑆 ∩ dom 𝐹) ∈ V ∧ {𝑧} ∈ V) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝑆 ∈ V → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
94, 8syl 17 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
10 frrlem11.1 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
11 frrlem11.2 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
12 frrlem11.3 . . . . 5 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
13 frrlem11.4 . . . . 5 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1410, 11, 12, 13frrlem11 8295 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
1514adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
16 inss1 4212 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ 𝑆
17 frrlem13.9 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑆𝐴)
181, 17sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆𝐴)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆𝐴)
2016, 19sstrid 3970 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑆 ∩ dom 𝐹) ⊆ 𝐴)
211adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧𝐴)
2221adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧𝐴)
2322snssd 4785 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → {𝑧} ⊆ 𝐴)
2420, 23unssd 4167 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴)
25 elun 4128 . . . . . . . . 9 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
26 elin 3942 . . . . . . . . . 10 (𝑤 ∈ (𝑆 ∩ dom 𝐹) ↔ (𝑤𝑆𝑤 ∈ dom 𝐹))
27 velsn 4617 . . . . . . . . . 10 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
2826, 27orbi12i 914 . . . . . . . . 9 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
2925, 28bitri 275 . . . . . . . 8 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
30 frrlem12.7 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
311, 30sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
33 rsp 3230 . . . . . . . . . . . 12 (∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3432, 33syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3510, 11frrlem8 8292 . . . . . . . . . . 11 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
3634, 35anim12d1 610 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)))
37 ssin 4214 . . . . . . . . . 10 ((Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
3836, 37imbitrdi 251 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
39 frrlem12.6 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
401, 39sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
4140adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
42 preddif 6318 . . . . . . . . . . . . . . . 16 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧))
4342eqeq1i 2740 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
44 ssdif0 4341 . . . . . . . . . . . . . . 15 (Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧) ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
4543, 44sylbb2 238 . . . . . . . . . . . . . 14 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧))
46 predss 6298 . . . . . . . . . . . . . 14 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
4745, 46sstrdi 3971 . . . . . . . . . . . . 13 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4847adantl 481 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4948adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
5041, 49ssind 4216 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹))
51 predeq3 6294 . . . . . . . . . . 11 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
5251sseq1d 3990 . . . . . . . . . 10 (𝑤 = 𝑧 → (Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹)))
5350, 52syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5438, 53jaod 859 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5529, 54biimtrid 242 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5655imp 406 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
57 ssun1 4153 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})
5856, 57sstrdi 3971 . . . . 5 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
5958ralrimiva 3132 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
6024, 59jca 511 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
61 frrlem12.5 . . . . . . 7 (𝜑𝑅 Fr 𝐴)
6210, 11, 12, 13, 61, 39, 30frrlem12 8296 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
63623expa 1118 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6463ralrimiva 3132 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6564adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
66 fneq2 6630 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶 Fn 𝑡𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
67 sseq1 3984 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝑡𝐴 ↔ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴))
68 sseq2 3985 . . . . . . . 8 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
6968raleqbi1dv 3317 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
7067, 69anbi12d 632 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ↔ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))))
71 raleq 3302 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7266, 70, 713anbi123d 1438 . . . . 5 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7372spcegv 3576 . . . 4 (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V → ((𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7473imp 406 . . 3 ((((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V ∧ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
759, 15, 60, 65, 74syl13anc 1374 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7610, 11, 12frrlem9 8293 . . . . . 6 (𝜑 → Fun 𝐹)
77 resfunexg 7207 . . . . . 6 ((Fun 𝐹𝑆 ∈ V) → (𝐹𝑆) ∈ V)
7876, 4, 77syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐹𝑆) ∈ V)
79 snex 5406 . . . . 5 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V
80 unexg 7737 . . . . 5 (((𝐹𝑆) ∈ V ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8178, 79, 80sylancl 586 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8213, 81eqeltrid 2838 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 ∈ V)
83 fneq1 6629 . . . . . 6 (𝑐 = 𝐶 → (𝑐 Fn 𝑡𝐶 Fn 𝑡))
84 fveq1 6875 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑤) = (𝐶𝑤))
85 reseq1 5960 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))
8685oveq2d 7421 . . . . . . . 8 (𝑐 = 𝐶 → (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
8784, 86eqeq12d 2751 . . . . . . 7 (𝑐 = 𝐶 → ((𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8887ralbidv 3163 . . . . . 6 (𝑐 = 𝐶 → (∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8983, 883anbi13d 1440 . . . . 5 (𝑐 = 𝐶 → ((𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9089exbidv 1921 . . . 4 (𝑐 = 𝐶 → (∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9110frrlem1 8285 . . . 4 𝐵 = {𝑐 ∣ ∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))))}
9290, 91elab2g 3659 . . 3 (𝐶 ∈ V → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9382, 92syl 17 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9475, 93mpbird 257 1 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wral 3051  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   class class class wbr 5119   Fr wfr 5603  dom cdm 5654  cres 5656  Predcpred 6289  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405  frecscfrecs 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-fr 5606  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-frecs 8280
This theorem is referenced by:  frrlem14  8298
  Copyright terms: Public domain W3C validator