MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem13 Structured version   Visualization version   GIF version

Theorem frrlem13 8228
Description: Lemma for well-founded recursion. Assuming that 𝑆 is a subset of 𝐴 and that 𝑧 is 𝑅-minimal, then 𝐶 is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
Assertion
Ref Expression
frrlem13 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem13
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4078 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
2 frrlem13.8 . . . . . 6 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
31, 2sylan2 593 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆 ∈ V)
43adantrr 717 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆 ∈ V)
5 inex1g 5255 . . . . 5 (𝑆 ∈ V → (𝑆 ∩ dom 𝐹) ∈ V)
6 snex 5372 . . . . 5 {𝑧} ∈ V
7 unexg 7676 . . . . 5 (((𝑆 ∩ dom 𝐹) ∈ V ∧ {𝑧} ∈ V) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝑆 ∈ V → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
94, 8syl 17 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V)
10 frrlem11.1 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
11 frrlem11.2 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
12 frrlem11.3 . . . . 5 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
13 frrlem11.4 . . . . 5 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1410, 11, 12, 13frrlem11 8226 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
1514adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
16 inss1 4184 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ 𝑆
17 frrlem13.9 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑆𝐴)
181, 17sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑆𝐴)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑆𝐴)
2016, 19sstrid 3941 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑆 ∩ dom 𝐹) ⊆ 𝐴)
211adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧𝐴)
2221adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧𝐴)
2322snssd 4758 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → {𝑧} ⊆ 𝐴)
2420, 23unssd 4139 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴)
25 elun 4100 . . . . . . . . 9 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
26 elin 3913 . . . . . . . . . 10 (𝑤 ∈ (𝑆 ∩ dom 𝐹) ↔ (𝑤𝑆𝑤 ∈ dom 𝐹))
27 velsn 4589 . . . . . . . . . 10 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
2826, 27orbi12i 914 . . . . . . . . 9 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
2925, 28bitri 275 . . . . . . . 8 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧))
30 frrlem12.7 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
311, 30sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
33 rsp 3220 . . . . . . . . . . . 12 (∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3432, 33syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤𝑆 → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆))
3510, 11frrlem8 8223 . . . . . . . . . . 11 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
3634, 35anim12d1 610 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)))
37 ssin 4186 . . . . . . . . . 10 ((Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
3836, 37imbitrdi 251 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝑤𝑆𝑤 ∈ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
39 frrlem12.6 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
401, 39sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
4140adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
42 preddif 6276 . . . . . . . . . . . . . . . 16 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧))
4342eqeq1i 2736 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
44 ssdif0 4313 . . . . . . . . . . . . . . 15 (Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧) ↔ (Pred(𝑅, 𝐴, 𝑧) ∖ Pred(𝑅, dom 𝐹, 𝑧)) = ∅)
4543, 44sylbb2 238 . . . . . . . . . . . . . 14 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, dom 𝐹, 𝑧))
46 predss 6256 . . . . . . . . . . . . . 14 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
4745, 46sstrdi 3942 . . . . . . . . . . . . 13 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4847adantl 481 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
4948adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
5041, 49ssind 4188 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹))
51 predeq3 6252 . . . . . . . . . . 11 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
5251sseq1d 3961 . . . . . . . . . 10 (𝑤 = 𝑧 → (Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (𝑆 ∩ dom 𝐹)))
5350, 52syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5438, 53jaod 859 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑤𝑆𝑤 ∈ dom 𝐹) ∨ 𝑤 = 𝑧) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5529, 54biimtrid 242 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹)))
5655imp 406 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
57 ssun1 4125 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})
5856, 57sstrdi 3942 . . . . 5 (((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
5958ralrimiva 3124 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
6024, 59jca 511 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
61 frrlem12.5 . . . . . . 7 (𝜑𝑅 Fr 𝐴)
6210, 11, 12, 13, 61, 39, 30frrlem12 8227 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
63623expa 1118 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6463ralrimiva 3124 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
6564adantrr 717 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
66 fneq2 6573 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶 Fn 𝑡𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
67 sseq1 3955 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝑡𝐴 ↔ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴))
68 sseq2 3956 . . . . . . . 8 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
6968raleqbi1dv 3304 . . . . . . 7 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡 ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})))
7067, 69anbi12d 632 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ↔ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))))
71 raleq 3289 . . . . . 6 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7266, 70, 713anbi123d 1438 . . . . 5 (𝑡 = ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → ((𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7372spcegv 3547 . . . 4 (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V → ((𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
7473imp 406 . . 3 ((((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∈ V ∧ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ∧ (((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})Pred(𝑅, 𝐴, 𝑤) ⊆ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) ∧ ∀𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})(𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
759, 15, 60, 65, 74syl13anc 1374 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7610, 11, 12frrlem9 8224 . . . . . 6 (𝜑 → Fun 𝐹)
77 resfunexg 7149 . . . . . 6 ((Fun 𝐹𝑆 ∈ V) → (𝐹𝑆) ∈ V)
7876, 4, 77syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐹𝑆) ∈ V)
79 snex 5372 . . . . 5 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V
80 unexg 7676 . . . . 5 (((𝐹𝑆) ∈ V ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ∈ V) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8178, 79, 80sylancl 586 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∈ V)
8213, 81eqeltrid 2835 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 ∈ V)
83 fneq1 6572 . . . . . 6 (𝑐 = 𝐶 → (𝑐 Fn 𝑡𝐶 Fn 𝑡))
84 fveq1 6821 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑤) = (𝐶𝑤))
85 reseq1 5921 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))
8685oveq2d 7362 . . . . . . . 8 (𝑐 = 𝐶 → (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
8784, 86eqeq12d 2747 . . . . . . 7 (𝑐 = 𝐶 → ((𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8887ralbidv 3155 . . . . . 6 (𝑐 = 𝐶 → (∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
8983, 883anbi13d 1440 . . . . 5 (𝑐 = 𝐶 → ((𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9089exbidv 1922 . . . 4 (𝑐 = 𝐶 → (∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9110frrlem1 8216 . . . 4 𝐵 = {𝑐 ∣ ∃𝑡(𝑐 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝑐𝑤) = (𝑤𝐺(𝑐 ↾ Pred(𝑅, 𝐴, 𝑤))))}
9290, 91elab2g 3631 . . 3 (𝐶 ∈ V → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9382, 92syl 17 . 2 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → (𝐶𝐵 ↔ ∃𝑡(𝐶 Fn 𝑡 ∧ (𝑡𝐴 ∧ ∀𝑤𝑡 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑡) ∧ ∀𝑤𝑡 (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))))
9475, 93mpbird 257 1 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  {csn 4573  cop 4579   class class class wbr 5089   Fr wfr 5564  dom cdm 5614  cres 5616  Predcpred 6247  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  frecscfrecs 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-fr 5567  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-frecs 8211
This theorem is referenced by:  frrlem14  8229
  Copyright terms: Public domain W3C validator