MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Structured version   Visualization version   GIF version

Theorem cnpresti 23317
Description: One direction of cnprest 23318 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnpresti ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))

Proof of Theorem cnpresti
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2740 . . . . 5 𝐾 = 𝐾
31, 2cnpf 23276 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋 𝐾)
433ad2ant3 1135 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋 𝐾)
5 simp1 1136 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴𝑋)
64, 5fssresd 6788 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴):𝐴 𝐾)
7 simpl2 1192 . . . . . 6 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → 𝑃𝐴)
87fvresd 6940 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
98eleq1d 2829 . . . 4 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝑦))
10 cnpimaex 23285 . . . . . . 7 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
11103expia 1121 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
12113ad2antl3 1187 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
13 idd 24 . . . . . . . . . . 11 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥𝑃𝑥))
14 simp2 1137 . . . . . . . . . . 11 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝐴)
1513, 14jctird 526 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥 → (𝑃𝑥𝑃𝐴)))
16 elin 3992 . . . . . . . . . 10 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
1715, 16imbitrrdi 252 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥𝑃 ∈ (𝑥𝐴)))
18 inss1 4258 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
19 imass2 6132 . . . . . . . . . . 11 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
2018, 19ax-mp 5 . . . . . . . . . 10 (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥)
21 id 22 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑦)
2220, 21sstrid 4020 . . . . . . . . 9 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
2317, 22anim12d1 609 . . . . . . . 8 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
2423reximdv 3176 . . . . . . 7 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
25 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
2625inex1 5335 . . . . . . . . 9 (𝑥𝐴) ∈ V
2726a1i 11 . . . . . . . 8 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
28 cnptop1 23271 . . . . . . . . . 10 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
29283ad2ant3 1135 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3029uniexd 7777 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
315, 1sseqtrdi 4059 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 𝐽)
3230, 31ssexd 5342 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ∈ V)
33 elrest 17487 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
3429, 32, 33syl2anc 583 . . . . . . . 8 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
35 simpr 484 . . . . . . . . . 10 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
3635eleq2d 2830 . . . . . . . . 9 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
3735imaeq2d 6089 . . . . . . . . . . 11 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
38 inss2 4259 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
39 resima2 6045 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
4038, 39ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
4137, 40eqtrdi 2796 . . . . . . . . . 10 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
4241sseq1d 4040 . . . . . . . . 9 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
4336, 42anbi12d 631 . . . . . . . 8 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
4427, 34, 43rexxfr2d 5429 . . . . . . 7 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
4524, 44sylibrd 259 . . . . . 6 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4645adantr 480 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4712, 46syld 47 . . . 4 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
489, 47sylbid 240 . . 3 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4948ralrimiva 3152 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
501toptopon 22944 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5129, 50sylib 218 . . . 4 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
52 resttopon 23190 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
5351, 5, 52syl2anc 583 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
54 cnptop2 23272 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
55543ad2ant3 1135 . . . 4 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
562toptopon 22944 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
5755, 56sylib 218 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ (TopOn‘ 𝐾))
58 iscnp 23266 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
5953, 57, 14, 58syl3anc 1371 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
606, 49, 59mpbir2and 712 1 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   cuni 4931  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937   CnP ccnp 23254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cnp 23257
This theorem is referenced by:  efrlim  27030  efrlimOLD  27031  cvmlift2lem11  35281
  Copyright terms: Public domain W3C validator