Step | Hyp | Ref
| Expression |
1 | | cnprest.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
3 | 1, 2 | cnpf 22306 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | 3ad2ant3 1133 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶∪ 𝐾) |
5 | | simp1 1134 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ⊆ 𝑋) |
6 | 4, 5 | fssresd 6625 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
7 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → 𝑃 ∈ 𝐴) |
8 | 7 | fvresd 6776 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹‘𝑃) ∈ 𝑦)) |
10 | | cnpimaex 22315 |
. . . . . . 7
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
11 | 10 | 3expia 1119 |
. . . . . 6
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
12 | 11 | 3ad2antl3 1185 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
13 | | idd 24 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → 𝑃 ∈ 𝑥)) |
14 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝐴) |
15 | 13, 14 | jctird 526 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴))) |
16 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) |
17 | 15, 16 | syl6ibr 251 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ 𝐴))) |
18 | | inss1 4159 |
. . . . . . . . . . 11
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
19 | | imass2 5999 |
. . . . . . . . . . 11
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) |
21 | | id 22 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ 𝑥) ⊆ 𝑦) |
22 | 20, 21 | sstrid 3928 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) |
23 | 17, 22 | anim12d1 609 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
24 | 23 | reximdv 3201 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
25 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
26 | 25 | inex1 5236 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
28 | | cnptop1 22301 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
29 | 28 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top) |
30 | 29 | uniexd 7573 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∪ 𝐽 ∈ V) |
31 | 5, 1 | sseqtrdi 3967 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ⊆ ∪ 𝐽) |
32 | 30, 31 | ssexd 5243 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ∈ V) |
33 | | elrest 17055 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
34 | 29, 32, 33 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
35 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) |
36 | 35 | eleq2d 2824 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) |
37 | 35 | imaeq2d 5958 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) |
38 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
39 | | resima2 5915 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) |
41 | 37, 40 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) |
42 | 41 | sseq1d 3948 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
43 | 36, 42 | anbi12d 630 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
44 | 27, 34, 43 | rexxfr2d 5329 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
45 | 24, 44 | sylibrd 258 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
46 | 45 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
47 | 12, 46 | syld 47 |
. . . 4
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
48 | 9, 47 | sylbid 239 |
. . 3
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
49 | 48 | ralrimiva 3107 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
50 | 1 | toptopon 21974 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
51 | 29, 50 | sylib 217 |
. . . 4
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
52 | | resttopon 22220 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
53 | 51, 5, 52 | syl2anc 583 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
54 | | cnptop2 22302 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) |
55 | 54 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top) |
56 | 2 | toptopon 21974 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
57 | 55, 56 | sylib 217 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
58 | | iscnp 22296 |
. . 3
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
59 | 53, 57, 14, 58 | syl3anc 1369 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
60 | 6, 49, 59 | mpbir2and 709 |
1
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |