MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Structured version   Visualization version   GIF version

Theorem cnpresti 22427
Description: One direction of cnprest 22428 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnpresti ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))

Proof of Theorem cnpresti
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2738 . . . . 5 𝐾 = 𝐾
31, 2cnpf 22386 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋 𝐾)
433ad2ant3 1134 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋 𝐾)
5 simp1 1135 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴𝑋)
64, 5fssresd 6634 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴):𝐴 𝐾)
7 simpl2 1191 . . . . . 6 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → 𝑃𝐴)
87fvresd 6787 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
98eleq1d 2823 . . . 4 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝑦))
10 cnpimaex 22395 . . . . . . 7 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
11103expia 1120 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
12113ad2antl3 1186 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
13 idd 24 . . . . . . . . . . 11 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥𝑃𝑥))
14 simp2 1136 . . . . . . . . . . 11 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝐴)
1513, 14jctird 527 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥 → (𝑃𝑥𝑃𝐴)))
16 elin 3903 . . . . . . . . . 10 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
1715, 16syl6ibr 251 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃𝑥𝑃 ∈ (𝑥𝐴)))
18 inss1 4163 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
19 imass2 6004 . . . . . . . . . . 11 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
2018, 19ax-mp 5 . . . . . . . . . 10 (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥)
21 id 22 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑦)
2220, 21sstrid 3932 . . . . . . . . 9 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
2317, 22anim12d1 610 . . . . . . . 8 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
2423reximdv 3200 . . . . . . 7 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
25 vex 3434 . . . . . . . . . 10 𝑥 ∈ V
2625inex1 5240 . . . . . . . . 9 (𝑥𝐴) ∈ V
2726a1i 11 . . . . . . . 8 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
28 cnptop1 22381 . . . . . . . . . 10 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
29283ad2ant3 1134 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3029uniexd 7586 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
315, 1sseqtrdi 3971 . . . . . . . . . 10 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 𝐽)
3230, 31ssexd 5247 . . . . . . . . 9 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ∈ V)
33 elrest 17126 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
3429, 32, 33syl2anc 584 . . . . . . . 8 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
35 simpr 485 . . . . . . . . . 10 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
3635eleq2d 2824 . . . . . . . . 9 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
3735imaeq2d 5963 . . . . . . . . . . 11 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
38 inss2 4164 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
39 resima2 5920 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
4038, 39ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
4137, 40eqtrdi 2794 . . . . . . . . . 10 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
4241sseq1d 3952 . . . . . . . . 9 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
4336, 42anbi12d 631 . . . . . . . 8 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
4427, 34, 43rexxfr2d 5333 . . . . . . 7 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
4524, 44sylibrd 258 . . . . . 6 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4645adantr 481 . . . . 5 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4712, 46syld 47 . . . 4 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
489, 47sylbid 239 . . 3 (((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
4948ralrimiva 3113 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
501toptopon 22054 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5129, 50sylib 217 . . . 4 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
52 resttopon 22300 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
5351, 5, 52syl2anc 584 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
54 cnptop2 22382 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
55543ad2ant3 1134 . . . 4 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
562toptopon 22054 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
5755, 56sylib 217 . . 3 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ (TopOn‘ 𝐾))
58 iscnp 22376 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
5953, 57, 14, 58syl3anc 1370 . 2 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
606, 49, 59mpbir2and 710 1 ((𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3430  cin 3886  wss 3887   cuni 4840  cres 5587  cima 5588  wf 6423  cfv 6427  (class class class)co 7268  t crest 17119  Topctop 22030  TopOnctopon 22047   CnP ccnp 22364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-map 8605  df-en 8722  df-fin 8725  df-fi 9158  df-rest 17121  df-topgen 17142  df-top 22031  df-topon 22048  df-bases 22084  df-cnp 22367
This theorem is referenced by:  efrlim  26107  cvmlift2lem11  33261
  Copyright terms: Public domain W3C validator