| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12d | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | idd 24 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
| 4 | 1, 2, 3 | syl2and 608 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| Copyright terms: Public domain | W3C validator |