![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsupexmnf | Structured version Visualization version GIF version |
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
Ref | Expression |
---|---|
xrsupexmnf | ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞})) | |
2 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) | |
3 | velsn 4664 | . . . . . . . . 9 ⊢ (𝑦 ∈ {-∞} ↔ 𝑦 = -∞) | |
4 | nltmnf 13192 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞) | |
5 | breq2 5170 | . . . . . . . . . . 11 ⊢ (𝑦 = -∞ → (𝑥 < 𝑦 ↔ 𝑥 < -∞)) | |
6 | 5 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
7 | 4, 6 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦)) |
8 | 3, 7 | biimtrid 242 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
10 | 2, 9 | jaod 858 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦)) |
11 | 1, 10 | biimtrid 242 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝑥 ∈ ℝ* → ((𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))) |
13 | 12 | ralimdv2 3169 | . . 3 ⊢ (𝑥 ∈ ℝ* → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦)) |
14 | elun1 4205 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (𝐴 ∪ {-∞})) | |
15 | 14 | anim1i 614 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧)) |
16 | 15 | reximi2 3085 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧) |
17 | 16 | imim2i 16 | . . . 4 ⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
18 | 17 | ralimi 3089 | . . 3 ⊢ (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
19 | 13, 18 | anim12d1 609 | . 2 ⊢ (𝑥 ∈ ℝ* → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))) |
20 | 19 | reximia 3087 | 1 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∪ cun 3974 {csn 4648 class class class wbr 5166 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: xrsupss 13371 |
Copyright terms: Public domain | W3C validator |