![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsupexmnf | Structured version Visualization version GIF version |
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
Ref | Expression |
---|---|
xrsupexmnf | ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4141 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞})) | |
2 | simpr 483 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) | |
3 | velsn 4640 | . . . . . . . . 9 ⊢ (𝑦 ∈ {-∞} ↔ 𝑦 = -∞) | |
4 | nltmnf 13141 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞) | |
5 | breq2 5147 | . . . . . . . . . . 11 ⊢ (𝑦 = -∞ → (𝑥 < 𝑦 ↔ 𝑥 < -∞)) | |
6 | 5 | notbid 317 | . . . . . . . . . 10 ⊢ (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
7 | 4, 6 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦)) |
8 | 3, 7 | biimtrid 241 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
9 | 8 | adantr 479 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
10 | 2, 9 | jaod 857 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦)) |
11 | 1, 10 | biimtrid 241 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)) |
12 | 11 | ex 411 | . . . 4 ⊢ (𝑥 ∈ ℝ* → ((𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))) |
13 | 12 | ralimdv2 3153 | . . 3 ⊢ (𝑥 ∈ ℝ* → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦)) |
14 | elun1 4170 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (𝐴 ∪ {-∞})) | |
15 | 14 | anim1i 613 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧)) |
16 | 15 | reximi2 3069 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧) |
17 | 16 | imim2i 16 | . . . 4 ⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
18 | 17 | ralimi 3073 | . . 3 ⊢ (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
19 | 13, 18 | anim12d1 608 | . 2 ⊢ (𝑥 ∈ ℝ* → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))) |
20 | 19 | reximia 3071 | 1 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ∪ cun 3937 {csn 4624 class class class wbr 5143 -∞cmnf 11276 ℝ*cxr 11277 < clt 11278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 |
This theorem is referenced by: xrsupss 13320 |
Copyright terms: Public domain | W3C validator |