![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsupexmnf | Structured version Visualization version GIF version |
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
Ref | Expression |
---|---|
xrsupexmnf | ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4163 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞})) | |
2 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) | |
3 | velsn 4647 | . . . . . . . . 9 ⊢ (𝑦 ∈ {-∞} ↔ 𝑦 = -∞) | |
4 | nltmnf 13169 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞) | |
5 | breq2 5152 | . . . . . . . . . . 11 ⊢ (𝑦 = -∞ → (𝑥 < 𝑦 ↔ 𝑥 < -∞)) | |
6 | 5 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
7 | 4, 6 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦)) |
8 | 3, 7 | biimtrid 242 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
10 | 2, 9 | jaod 859 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦)) |
11 | 1, 10 | biimtrid 242 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝑥 ∈ ℝ* → ((𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))) |
13 | 12 | ralimdv2 3161 | . . 3 ⊢ (𝑥 ∈ ℝ* → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦)) |
14 | elun1 4192 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (𝐴 ∪ {-∞})) | |
15 | 14 | anim1i 615 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧)) |
16 | 15 | reximi2 3077 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧) |
17 | 16 | imim2i 16 | . . . 4 ⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
18 | 17 | ralimi 3081 | . . 3 ⊢ (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
19 | 13, 18 | anim12d1 610 | . 2 ⊢ (𝑥 ∈ ℝ* → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))) |
20 | 19 | reximia 3079 | 1 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∪ cun 3961 {csn 4631 class class class wbr 5148 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 |
This theorem is referenced by: xrsupss 13348 |
Copyright terms: Public domain | W3C validator |