MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupexmnf Structured version   Visualization version   GIF version

Theorem xrsupexmnf 13038
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.)
Assertion
Ref Expression
xrsupexmnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupexmnf
StepHypRef Expression
1 elun 4088 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦𝐴𝑦 ∈ {-∞}))
2 simpr 485 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦𝐴 → ¬ 𝑥 < 𝑦))
3 velsn 4583 . . . . . . . . 9 (𝑦 ∈ {-∞} ↔ 𝑦 = -∞)
4 nltmnf 12864 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
5 breq2 5083 . . . . . . . . . . 11 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
65notbid 318 . . . . . . . . . 10 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
74, 6syl5ibrcom 246 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦))
83, 7syl5bi 241 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
98adantr 481 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
102, 9jaod 856 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦𝐴𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦))
111, 10syl5bi 241 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))
1211ex 413 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)))
1312ralimdv2 3104 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦))
14 elun1 4115 . . . . . . 7 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {-∞}))
1514anim1i 615 . . . . . 6 ((𝑧𝐴𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧))
1615reximi2 3174 . . . . 5 (∃𝑧𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)
1716imim2i 16 . . . 4 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1817ralimi 3089 . . 3 (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1913, 18anim12d1 610 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))))
2019reximia 3175 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  wral 3066  wrex 3067  cun 3890  {csn 4567   class class class wbr 5079  -∞cmnf 11008  *cxr 11009   < clt 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015
This theorem is referenced by:  xrsupss  13042
  Copyright terms: Public domain W3C validator