MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupexmnf Structured version   Visualization version   GIF version

Theorem xrsupexmnf 13367
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.)
Assertion
Ref Expression
xrsupexmnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupexmnf
StepHypRef Expression
1 elun 4176 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦𝐴𝑦 ∈ {-∞}))
2 simpr 484 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦𝐴 → ¬ 𝑥 < 𝑦))
3 velsn 4664 . . . . . . . . 9 (𝑦 ∈ {-∞} ↔ 𝑦 = -∞)
4 nltmnf 13192 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
5 breq2 5170 . . . . . . . . . . 11 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
65notbid 318 . . . . . . . . . 10 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
74, 6syl5ibrcom 247 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦))
83, 7biimtrid 242 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
98adantr 480 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
102, 9jaod 858 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦𝐴𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦))
111, 10biimtrid 242 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))
1211ex 412 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)))
1312ralimdv2 3169 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦))
14 elun1 4205 . . . . . . 7 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {-∞}))
1514anim1i 614 . . . . . 6 ((𝑧𝐴𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧))
1615reximi2 3085 . . . . 5 (∃𝑧𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)
1716imim2i 16 . . . 4 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1817ralimi 3089 . . 3 (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1913, 18anim12d1 609 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))))
2019reximia 3087 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cun 3974  {csn 4648   class class class wbr 5166  -∞cmnf 11322  *cxr 11323   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329
This theorem is referenced by:  xrsupss  13371
  Copyright terms: Public domain W3C validator