MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvdelem Structured version   Visualization version   GIF version

Theorem upgrwlkdvdelem 28392
Description: Lemma for upgrwlkdvde 28393. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Proof shortened by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvdelem ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem upgrwlkdvdelem
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfin 14335 . . 3 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
2 wrdf 14322 . . 3 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
3 simpr 485 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
43adantr 481 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
5 2fveq3 6830 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑥)))
6 fveq2 6825 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃𝑘) = (𝑃𝑥))
7 fvoveq1 7360 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1)))
86, 7preq12d 4689 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
95, 8eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
109rspcv 3566 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
11 2fveq3 6830 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑦)))
12 fveq2 6825 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃𝑘) = (𝑃𝑦))
13 fvoveq1 7360 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1)))
1412, 13preq12d 4689 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
1511, 14eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1615rspcv 3566 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1710, 16anim12ii 618 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})))
18 fveq2 6825 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = (𝐹𝑦) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
19 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
2019eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
2120adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
22 simpl 483 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
23 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2423adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2521, 22, 243eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
26 fvex 6838 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑥) ∈ V
27 fvex 6838 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑥 + 1)) ∈ V
28 fvex 6838 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑦) ∈ V
29 fvex 6838 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑦 + 1)) ∈ V
3026, 27, 28, 29preq12b 4795 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))))
31 dff13 7184 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1𝑉 ↔ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)))
32 elfzofz 13504 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹)))
33 elfzofz 13504 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ (0...(♯‘𝐹)))
34 fveqeq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑏)))
35 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → (𝑎 = 𝑏𝑥 = 𝑏))
3634, 35imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑥 → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏)))
37 fveq2 6825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑦 → (𝑃𝑏) = (𝑃𝑦))
3837eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑦)))
39 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → (𝑥 = 𝑏𝑥 = 𝑦))
4038, 39imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 = 𝑦 → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4136, 40rspc2v 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4232, 33, 41syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4342a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦))))
4443com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃𝑥) = (𝑃𝑦) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
46 hashcl 14171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
4732a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹))))
48 fzofzp1 13585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 + 1) ∈ (0...(♯‘𝐹)))
4947, 48anim12d1 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹)))))
5049imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))))
51 fveq2 6825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = (𝑦 + 1) → (𝑃𝑏) = (𝑃‘(𝑦 + 1)))
5251eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃‘(𝑦 + 1))))
53 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏𝑥 = (𝑦 + 1)))
5452, 53imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = (𝑦 + 1) → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5536, 54rspc2v 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5756imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))
58 fzofzp1 13585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹)))
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹))))
6059, 33anim12d1 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹)))))
6160imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))))
62 fveqeq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑏)))
63 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏))
6462, 63imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = (𝑥 + 1) → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏)))
6537eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)))
66 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦))
6765, 66imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6864, 67rspc2v 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6961, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
7069imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦))
7157, 70anim12d 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
7271expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
73 oveq1 7344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
7473eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
7574adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
76 elfzonn0 13533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
77 nn0cn 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
78 add1p1 12325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → ((𝑦 + 1) + 1) = (𝑦 + 2))
8079eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦 ↔ (𝑦 + 2) = 𝑦))
81 2cnd 12152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
82 2ne0 12178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 ≠ 0
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ≠ 0)
84 addn0nid 11496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦)
8577, 81, 83, 84syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → (𝑦 + 2) ≠ 𝑦)
86 eqneqall 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦𝑥 = 𝑦))
8785, 86syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → ((𝑦 + 2) = 𝑦𝑥 = 𝑦))
8880, 87sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
8976, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9089adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9190adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9275, 91sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦𝑥 = 𝑦))
9392expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9572, 94syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦))
9695ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9746, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9897com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))
9998expd 416 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → 𝑥 = 𝑦))))
101100com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10245, 101jaoi 854 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
103102adantld 491 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10431, 103biimtrid 241 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
105104com23 86 . . . . . . . . . . . . . . . . . . 19 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10630, 105sylbi 216 . . . . . . . . . . . . . . . . . 18 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10725, 106syl 17 . . . . . . . . . . . . . . . . 17 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
108107ex 413 . . . . . . . . . . . . . . . 16 ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
10918, 108syl 17 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = (𝐹𝑦) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
110109com15 101 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
11117, 110syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
112111com14 96 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
113112imp 407 . . . . . . . . . . 11 ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
114113impcom 408 . . . . . . . . . 10 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
115114ralrimivv 3191 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
116115adantlr 712 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
117 dff13 7184 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1184, 116, 117sylanbrc 583 . . . . . . 7 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
119 df-f1 6484 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
120118, 119sylib 217 . . . . . 6 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
121 simpr 485 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹) → Fun 𝐹)
122120, 121syl 17 . . . . 5 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → Fun 𝐹)
123122ex 413 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹))
124123expd 416 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
1251, 2, 124syl2anc 584 . 2 (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
126125impcom 408 1 ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wral 3061  {cpr 4575  ccnv 5619  dom cdm 5620  Fun wfun 6473  wf 6475  1-1wf1 6476  cfv 6479  (class class class)co 7337  Fincfn 8804  cc 10970  0cc0 10972  1c1 10973   + caddc 10975  2c2 12129  0cn0 12334  ...cfz 13340  ..^cfzo 13483  chash 14145  Word cword 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318
This theorem is referenced by:  upgrwlkdvde  28393
  Copyright terms: Public domain W3C validator