MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvdelem Structured version   Visualization version   GIF version

Theorem upgrwlkdvdelem 27519
Description: Lemma for upgrwlkdvde 27520. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Proof shortened by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvdelem ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem upgrwlkdvdelem
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfin 13884 . . 3 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
2 wrdf 13869 . . 3 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
3 simpr 487 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
43adantr 483 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
5 2fveq3 6677 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑥)))
6 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃𝑘) = (𝑃𝑥))
7 fvoveq1 7181 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1)))
86, 7preq12d 4679 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
95, 8eqeq12d 2839 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
109rspcv 3620 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
11 2fveq3 6677 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑦)))
12 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃𝑘) = (𝑃𝑦))
13 fvoveq1 7181 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1)))
1412, 13preq12d 4679 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
1511, 14eqeq12d 2839 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1615rspcv 3620 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1710, 16anim12ii 619 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})))
18 fveq2 6672 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = (𝐹𝑦) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
19 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
2019eqcomd 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
2120adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
22 simpl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
23 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2423adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2521, 22, 243eqtrd 2862 . . . . . . . . . . . . . . . . . 18 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
26 fvex 6685 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑥) ∈ V
27 fvex 6685 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑥 + 1)) ∈ V
28 fvex 6685 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑦) ∈ V
29 fvex 6685 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑦 + 1)) ∈ V
3026, 27, 28, 29preq12b 4783 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))))
31 dff13 7015 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1𝑉 ↔ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)))
32 elfzofz 13056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹)))
33 elfzofz 13056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ (0...(♯‘𝐹)))
34 fveqeq2 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑏)))
35 eqeq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → (𝑎 = 𝑏𝑥 = 𝑏))
3634, 35imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑥 → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏)))
37 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑦 → (𝑃𝑏) = (𝑃𝑦))
3837eqeq2d 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑦)))
39 eqeq2 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → (𝑥 = 𝑏𝑥 = 𝑦))
4038, 39imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 = 𝑦 → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4136, 40rspc2v 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4232, 33, 41syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4342a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦))))
4443com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃𝑥) = (𝑃𝑦) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
4544adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
46 hashcl 13720 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
4732a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹))))
48 fzofzp1 13137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 + 1) ∈ (0...(♯‘𝐹)))
4947, 48anim12d1 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹)))))
5049imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))))
51 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = (𝑦 + 1) → (𝑃𝑏) = (𝑃‘(𝑦 + 1)))
5251eqeq2d 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃‘(𝑦 + 1))))
53 eqeq2 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏𝑥 = (𝑦 + 1)))
5452, 53imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = (𝑦 + 1) → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5536, 54rspc2v 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5756imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))
58 fzofzp1 13137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹)))
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹))))
6059, 33anim12d1 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹)))))
6160imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))))
62 fveqeq2 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑏)))
63 eqeq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏))
6462, 63imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = (𝑥 + 1) → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏)))
6537eqeq2d 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)))
66 eqeq2 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦))
6765, 66imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6864, 67rspc2v 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6961, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
7069imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦))
7157, 70anim12d 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
7271expimpd 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
73 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
7473eqeq1d 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
7574adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
76 elfzonn0 13085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
77 nn0cn 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
78 add1p1 11891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → ((𝑦 + 1) + 1) = (𝑦 + 2))
8079eqeq1d 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦 ↔ (𝑦 + 2) = 𝑦))
81 2cnd 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
82 2ne0 11744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 ≠ 0
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ≠ 0)
84 addn0nid 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦)
8577, 81, 83, 84syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → (𝑦 + 2) ≠ 𝑦)
86 eqneqall 3029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦𝑥 = 𝑦))
8785, 86syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → ((𝑦 + 2) = 𝑦𝑥 = 𝑦))
8880, 87sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
8976, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9089adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9190adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9275, 91sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦𝑥 = 𝑦))
9392expimpd 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9493adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9572, 94syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦))
9695ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9746, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9897com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))
9998expd 418 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → 𝑥 = 𝑦))))
101100com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10245, 101jaoi 853 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
103102adantld 493 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10431, 103syl5bi 244 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
105104com23 86 . . . . . . . . . . . . . . . . . . 19 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10630, 105sylbi 219 . . . . . . . . . . . . . . . . . 18 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10725, 106syl 17 . . . . . . . . . . . . . . . . 17 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
108107ex 415 . . . . . . . . . . . . . . . 16 ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
10918, 108syl 17 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = (𝐹𝑦) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
110109com15 101 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
11117, 110syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
112111com14 96 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
113112imp 409 . . . . . . . . . . 11 ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
114113impcom 410 . . . . . . . . . 10 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
115114ralrimivv 3192 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
116115adantlr 713 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
117 dff13 7015 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1184, 116, 117sylanbrc 585 . . . . . . 7 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
119 df-f1 6362 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
120118, 119sylib 220 . . . . . 6 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
121 simpr 487 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹) → Fun 𝐹)
122120, 121syl 17 . . . . 5 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → Fun 𝐹)
123122ex 415 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹))
124123expd 418 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
1251, 2, 124syl2anc 586 . 2 (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
126125impcom 410 1 ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  {cpr 4571  ccnv 5556  dom cdm 5557  Fun wfun 6351  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  2c2 11695  0cn0 11900  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865
This theorem is referenced by:  upgrwlkdvde  27520
  Copyright terms: Public domain W3C validator