Step | Hyp | Ref
| Expression |
1 | | wrdfin 14163 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) |
2 | | wrdf 14150 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
3 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
4 | 3 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
5 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑥))) |
6 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘𝑘) = (𝑃‘𝑥)) |
7 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1))) |
8 | 6, 7 | preq12d 4674 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
9 | 5, 8 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
10 | 9 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
11 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑦))) |
12 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘𝑘) = (𝑃‘𝑦)) |
13 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1))) |
14 | 12, 13 | preq12d 4674 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
15 | 11, 14 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
16 | 15 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
17 | 10, 16 | anim12ii 617 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}))) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
19 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
20 | 19 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
21 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
22 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
23 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
25 | 21, 22, 24 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
26 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑥) ∈ V |
27 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑥 + 1)) ∈ V |
28 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑦) ∈ V |
29 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑦 + 1)) ∈ V |
30 | 26, 27, 28, 29 | preq12b 4778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)))) |
31 | | dff13 7109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ↔ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏))) |
32 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ 𝑥 ∈
(0...(♯‘𝐹))) |
33 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
(0...(♯‘𝐹))) |
34 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑏))) |
35 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → (𝑎 = 𝑏 ↔ 𝑥 = 𝑏)) |
36 | 34, 35 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = 𝑥 → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏))) |
37 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑦 → (𝑃‘𝑏) = (𝑃‘𝑦)) |
38 | 37 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑦))) |
39 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → (𝑥 = 𝑏 ↔ 𝑥 = 𝑦)) |
40 | 38, 39 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑏 = 𝑦 → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
41 | 36, 40 | rspc2v 3562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈
(0...(♯‘𝐹))
∧ 𝑦 ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
42 | 32, 33, 41 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
43 | 42 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦)))) |
44 | 43 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃‘𝑥) = (𝑃‘𝑦) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
46 | | hashcl 13999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹 ∈ Fin →
(♯‘𝐹) ∈
ℕ0) |
47 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((♯‘𝐹)
∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹)))) |
48 | | fzofzp1 13412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (𝑦 + 1) ∈
(0...(♯‘𝐹))) |
49 | 47, 48 | anim12d1 609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))))) |
50 | 49 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹)))) |
51 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑏 = (𝑦 + 1) → (𝑃‘𝑏) = (𝑃‘(𝑦 + 1))) |
52 | 51 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘(𝑦 + 1)))) |
53 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏 ↔ 𝑥 = (𝑦 + 1))) |
54 | 52, 53 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = (𝑦 + 1) → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
55 | 36, 54 | rspc2v 3562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈
(0...(♯‘𝐹))
∧ (𝑦 + 1) ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
56 | 50, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
57 | 56 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))) |
58 | | fzofzp1 13412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (𝑥 + 1) ∈
(0...(♯‘𝐹))) |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((♯‘𝐹)
∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹)))) |
60 | 59, 33 | anim12d1 609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))))) |
61 | 60 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹)))) |
62 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑏))) |
63 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏)) |
64 | 62, 63 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = (𝑥 + 1) → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏))) |
65 | 37 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) |
66 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦)) |
67 | 65, 66 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
68 | 64, 67 | rspc2v 3562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑥 + 1) ∈
(0...(♯‘𝐹))
∧ 𝑦 ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
69 | 61, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
70 | 69 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦)) |
71 | 57, 70 | anim12d 608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
72 | 71 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
73 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1)) |
74 | 73 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
76 | | elfzonn0 13360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
ℕ0) |
77 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
78 | | add1p1 12154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2)) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 1) + 1) =
(𝑦 + 2)) |
80 | 79 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 ↔ (𝑦 + 2) = 𝑦)) |
81 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ∈ ℂ) |
82 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ 2 ≠
0 |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ≠ 0) |
84 | | addn0nid 11325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦) |
85 | 77, 81, 83, 84 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 2) ≠ 𝑦) |
86 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦 → 𝑥 = 𝑦)) |
87 | 85, 86 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 2) = 𝑦 → 𝑥 = 𝑦)) |
88 | 80, 87 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
89 | 76, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦 → 𝑥 = 𝑦)) |
92 | 75, 91 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 → 𝑥 = 𝑦)) |
93 | 92 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
95 | 72, 94 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦)) |
96 | 95 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
97 | 46, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 ∈ Fin → ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
98 | 97 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦))) |
99 | 98 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))) |
100 | 99 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → 𝑥 = 𝑦)))) |
101 | 100 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
102 | 45, 101 | jaoi 853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
103 | 102 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
104 | 31, 103 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
105 | 104 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
106 | 30, 105 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
107 | 25, 106 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
108 | 107 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))) |
109 | 18, 108 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))) |
110 | 109 | com15 101 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
111 | 17, 110 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
112 | 111 | com14 96 |
. . . . . . . . . . . 12
⊢ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
113 | 112 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
114 | 113 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
115 | 114 | ralrimivv 3113 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
116 | 115 | adantlr 711 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
117 | | dff13 7109 |
. . . . . . . 8
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
118 | 4, 116, 117 | sylanbrc 582 |
. . . . . . 7
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
119 | | df-f1 6423 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
120 | 118, 119 | sylib 217 |
. . . . . 6
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
121 | | simpr 484 |
. . . . . 6
⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → Fun ◡𝐹) |
122 | 120, 121 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → Fun ◡𝐹) |
123 | 122 | ex 412 |
. . . 4
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → Fun ◡𝐹)) |
124 | 123 | expd 415 |
. . 3
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
125 | 1, 2, 124 | syl2anc 583 |
. 2
⊢ (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
126 | 125 | impcom 407 |
1
⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ 𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹)) |