MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvdelem Structured version   Visualization version   GIF version

Theorem upgrwlkdvdelem 27795
Description: Lemma for upgrwlkdvde 27796. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Proof shortened by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvdelem ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem upgrwlkdvdelem
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfin 14070 . . 3 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
2 wrdf 14057 . . 3 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
3 simpr 488 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
43adantr 484 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
5 2fveq3 6711 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑥)))
6 fveq2 6706 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃𝑘) = (𝑃𝑥))
7 fvoveq1 7225 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1)))
86, 7preq12d 4647 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
95, 8eqeq12d 2750 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
109rspcv 3525 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
11 2fveq3 6711 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑦)))
12 fveq2 6706 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃𝑘) = (𝑃𝑦))
13 fvoveq1 7225 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1)))
1412, 13preq12d 4647 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
1511, 14eqeq12d 2750 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1615rspcv 3525 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}))
1710, 16anim12ii 621 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})))
18 fveq2 6706 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = (𝐹𝑦) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
19 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
2019eqcomd 2740 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
2120adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹𝑥)))
22 simpl 486 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
23 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2423adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
2521, 22, 243eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})
26 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑥) ∈ V
27 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑥 + 1)) ∈ V
28 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑦) ∈ V
29 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (𝑃‘(𝑦 + 1)) ∈ V
3026, 27, 28, 29preq12b 4751 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))))
31 dff13 7056 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1𝑉 ↔ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)))
32 elfzofz 13241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹)))
33 elfzofz 13241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ (0...(♯‘𝐹)))
34 fveqeq2 6715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑏)))
35 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑥 → (𝑎 = 𝑏𝑥 = 𝑏))
3634, 35imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑥 → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏)))
37 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑦 → (𝑃𝑏) = (𝑃𝑦))
3837eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃𝑦)))
39 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑦 → (𝑥 = 𝑏𝑥 = 𝑦))
4038, 39imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 = 𝑦 → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4136, 40rspc2v 3540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4232, 33, 41syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦)))
4342a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃𝑥) = (𝑃𝑦) → 𝑥 = 𝑦))))
4443com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃𝑥) = (𝑃𝑦) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
4544adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
46 hashcl 13906 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
4732a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹))))
48 fzofzp1 13322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 + 1) ∈ (0...(♯‘𝐹)))
4947, 48anim12d1 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹)))))
5049imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))))
51 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = (𝑦 + 1) → (𝑃𝑏) = (𝑃‘(𝑦 + 1)))
5251eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → ((𝑃𝑥) = (𝑃𝑏) ↔ (𝑃𝑥) = (𝑃‘(𝑦 + 1))))
53 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏𝑥 = (𝑦 + 1)))
5452, 53imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = (𝑦 + 1) → (((𝑃𝑥) = (𝑃𝑏) → 𝑥 = 𝑏) ↔ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5536, 54rspc2v 3540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))))
5756imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))
58 fzofzp1 13322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹)))
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝐹) ∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹))))
6059, 33anim12d1 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹)))))
6160imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))))
62 fveqeq2 6715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → ((𝑃𝑎) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑏)))
63 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏))
6462, 63imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = (𝑥 + 1) → (((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏)))
6537eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)))
66 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦))
6765, 66imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6864, 67rspc2v 3540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
6961, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦)))
7069imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃𝑦) → (𝑥 + 1) = 𝑦))
7157, 70anim12d 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
7271expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦)))
73 oveq1 7209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
7473eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
7574adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦))
76 elfzonn0 13270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
77 nn0cn 12083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
78 add1p1 12064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → ((𝑦 + 1) + 1) = (𝑦 + 2))
8079eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦 ↔ (𝑦 + 2) = 𝑦))
81 2cnd 11891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
82 2ne0 11917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 ≠ 0
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → 2 ≠ 0)
84 addn0nid 11235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦)
8577, 81, 83, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ ℕ0 → (𝑦 + 2) ≠ 𝑦)
86 eqneqall 2946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦𝑥 = 𝑦))
8785, 86syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℕ0 → ((𝑦 + 2) = 𝑦𝑥 = 𝑦))
8880, 87sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℕ0 → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
8976, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9089adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9190adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦𝑥 = 𝑦))
9275, 91sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦𝑥 = 𝑦))
9392expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9493adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦))
9572, 94syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦))
9695ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9746, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → 𝑥 = 𝑦)))
9897com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) ∧ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))
9998expd 419 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → 𝑥 = 𝑦))))
101100com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦)) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10245, 101jaoi 857 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
103102adantld 494 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃𝑎) = (𝑃𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10431, 103syl5bi 245 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
105104com23 86 . . . . . . . . . . . . . . . . . . 19 ((((𝑃𝑥) = (𝑃𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10630, 105sylbi 220 . . . . . . . . . . . . . . . . . 18 ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
10725, 106syl 17 . . . . . . . . . . . . . . . . 17 (((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) ∧ ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))
108107ex 416 . . . . . . . . . . . . . . . 16 ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
10918, 108syl 17 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = (𝐹𝑦) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))))
110109com15 101 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹𝑦)) = {(𝑃𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
11117, 110syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
112111com14 96 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
113112imp 410 . . . . . . . . . . 11 ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
114113impcom 411 . . . . . . . . . 10 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
115114ralrimivv 3104 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
116115adantlr 715 . . . . . . . 8 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
117 dff13 7056 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1184, 116, 117sylanbrc 586 . . . . . . 7 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
119 df-f1 6374 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
120118, 119sylib 221 . . . . . 6 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
121 simpr 488 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹) → Fun 𝐹)
122120, 121syl 17 . . . . 5 (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → Fun 𝐹)
123122ex 416 . . . 4 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(♯‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹))
124123expd 419 . . 3 ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
1251, 2, 124syl2anc 587 . 2 (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(♯‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
126125impcom 411 1 ((𝑃:(0...(♯‘𝐹))–1-1𝑉𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wral 3054  {cpr 4533  ccnv 5539  dom cdm 5540  Fun wfun 6363  wf 6365  1-1wf1 6366  cfv 6369  (class class class)co 7202  Fincfn 8615  cc 10710  0cc0 10712  1c1 10713   + caddc 10715  2c2 11868  0cn0 12073  ...cfz 13078  ..^cfzo 13221  chash 13879  Word cword 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053
This theorem is referenced by:  upgrwlkdvde  27796
  Copyright terms: Public domain W3C validator