HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 32318
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 32313 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4032 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3902   class class class wbr 5091   C cch 30904  0c0h 30910   ccv 30939  HAtomscat 30940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3919  df-at 32313
This theorem is referenced by:  atelch  32319  shatomistici  32336  hatomistici  32337  chpssati  32338
  Copyright terms: Public domain W3C validator