Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version |
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atssch | ⊢ HAtoms ⊆ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-at 30700 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
2 | 1 | ssrab3 4015 | 1 ⊢ HAtoms ⊆ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 class class class wbr 5074 Cℋ cch 29291 0ℋc0h 29297 ⋖ℋ ccv 29326 HAtomscat 29327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-at 30700 |
This theorem is referenced by: atelch 30706 shatomistici 30723 hatomistici 30724 chpssati 30725 |
Copyright terms: Public domain | W3C validator |