HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 32290
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 32285 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4062 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3931   class class class wbr 5123   C cch 30876  0c0h 30882   ccv 30911  HAtomscat 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-ss 3948  df-at 32285
This theorem is referenced by:  atelch  32291  shatomistici  32308  hatomistici  32309  chpssati  32310
  Copyright terms: Public domain W3C validator