HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 30705
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 30700 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4015 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3887   class class class wbr 5074   C cch 29291  0c0h 29297   ccv 29326  HAtomscat 29327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-at 30700
This theorem is referenced by:  atelch  30706  shatomistici  30723  hatomistici  30724  chpssati  30725
  Copyright terms: Public domain W3C validator