![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version |
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atssch | ⊢ HAtoms ⊆ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-at 32225 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
2 | 1 | ssrab3 4076 | 1 ⊢ HAtoms ⊆ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3944 class class class wbr 5149 Cℋ cch 30816 0ℋc0h 30822 ⋖ℋ ccv 30851 HAtomscat 30852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-ss 3961 df-at 32225 |
This theorem is referenced by: atelch 32231 shatomistici 32248 hatomistici 32249 chpssati 32250 |
Copyright terms: Public domain | W3C validator |