| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version | ||
| Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atssch | ⊢ HAtoms ⊆ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-at 32320 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
| 2 | 1 | ssrab3 4031 | 1 ⊢ HAtoms ⊆ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 class class class wbr 5093 Cℋ cch 30911 0ℋc0h 30917 ⋖ℋ ccv 30946 HAtomscat 30947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-ss 3915 df-at 32320 |
| This theorem is referenced by: atelch 32326 shatomistici 32343 hatomistici 32344 chpssati 32345 |
| Copyright terms: Public domain | W3C validator |