HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 32388
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 32383 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4095 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3966   class class class wbr 5151   C cch 30974  0c0h 30980   ccv 31009  HAtomscat 31010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-ss 3983  df-at 32383
This theorem is referenced by:  atelch  32389  shatomistici  32406  hatomistici  32407  chpssati  32408
  Copyright terms: Public domain W3C validator