HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 32230
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 32225 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4076 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3944   class class class wbr 5149   C cch 30816  0c0h 30822   ccv 30851  HAtomscat 30852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-ss 3961  df-at 32225
This theorem is referenced by:  atelch  32231  shatomistici  32248  hatomistici  32249  chpssati  32250
  Copyright terms: Public domain W3C validator