| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version | ||
| Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atssch | ⊢ HAtoms ⊆ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-at 32285 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ HAtoms ⊆ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 class class class wbr 5123 Cℋ cch 30876 0ℋc0h 30882 ⋖ℋ ccv 30911 HAtomscat 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-at 32285 |
| This theorem is referenced by: atelch 32291 shatomistici 32308 hatomistici 32309 chpssati 32310 |
| Copyright terms: Public domain | W3C validator |