| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version | ||
| Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atssch | ⊢ HAtoms ⊆ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-at 32274 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
| 2 | 1 | ssrab3 4048 | 1 ⊢ HAtoms ⊆ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 class class class wbr 5110 Cℋ cch 30865 0ℋc0h 30871 ⋖ℋ ccv 30900 HAtomscat 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-at 32274 |
| This theorem is referenced by: atelch 32280 shatomistici 32297 hatomistici 32298 chpssati 32299 |
| Copyright terms: Public domain | W3C validator |