HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atssch Structured version   Visualization version   GIF version

Theorem atssch 32272
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
atssch HAtoms ⊆ C

Proof of Theorem atssch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-at 32267 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
21ssrab3 4045 1 HAtoms ⊆ C
Colors of variables: wff setvar class
Syntax hints:  wss 3914   class class class wbr 5107   C cch 30858  0c0h 30864   ccv 30893  HAtomscat 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-ss 3931  df-at 32267
This theorem is referenced by:  atelch  32273  shatomistici  32290  hatomistici  32291  chpssati  32292
  Copyright terms: Public domain W3C validator