![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version |
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atssch | ⊢ HAtoms ⊆ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-at 32383 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
2 | 1 | ssrab3 4095 | 1 ⊢ HAtoms ⊆ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3966 class class class wbr 5151 Cℋ cch 30974 0ℋc0h 30980 ⋖ℋ ccv 31009 HAtomscat 31010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-ss 3983 df-at 32383 |
This theorem is referenced by: atelch 32389 shatomistici 32406 hatomistici 32407 chpssati 32408 |
Copyright terms: Public domain | W3C validator |