Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version |
Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atssch 30705 | . 2 ⊢ HAtoms ⊆ Cℋ | |
2 | 1 | sseli 3917 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Cℋ cch 29291 HAtomscat 29327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-at 30700 |
This theorem is referenced by: atsseq 30709 atcveq0 30710 chcv1 30717 chcv2 30718 hatomistici 30724 chrelati 30726 chrelat2i 30727 cvati 30728 cvexchlem 30730 cvp 30737 atnemeq0 30739 atcv0eq 30741 atcv1 30742 atexch 30743 atomli 30744 atoml2i 30745 atordi 30746 atcvatlem 30747 atcvati 30748 atcvat2i 30749 chirredlem1 30752 chirredlem2 30753 chirredlem3 30754 chirredlem4 30755 chirredi 30756 atcvat3i 30758 atcvat4i 30759 atdmd 30760 atmd 30761 atmd2 30762 atabsi 30763 mdsymlem2 30766 mdsymlem3 30767 mdsymlem5 30769 mdsymlem8 30772 atdmd2 30776 sumdmdi 30782 dmdbr4ati 30783 dmdbr5ati 30784 dmdbr6ati 30785 |
Copyright terms: Public domain | W3C validator |