Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version |
Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atssch 30701 | . 2 ⊢ HAtoms ⊆ Cℋ | |
2 | 1 | sseli 3922 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Cℋ cch 29287 HAtomscat 29323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-at 30696 |
This theorem is referenced by: atsseq 30705 atcveq0 30706 chcv1 30713 chcv2 30714 hatomistici 30720 chrelati 30722 chrelat2i 30723 cvati 30724 cvexchlem 30726 cvp 30733 atnemeq0 30735 atcv0eq 30737 atcv1 30738 atexch 30739 atomli 30740 atoml2i 30741 atordi 30742 atcvatlem 30743 atcvati 30744 atcvat2i 30745 chirredlem1 30748 chirredlem2 30749 chirredlem3 30750 chirredlem4 30751 chirredi 30752 atcvat3i 30754 atcvat4i 30755 atdmd 30756 atmd 30757 atmd2 30758 atabsi 30759 mdsymlem2 30762 mdsymlem3 30763 mdsymlem5 30765 mdsymlem8 30768 atdmd2 30772 sumdmdi 30778 dmdbr4ati 30779 dmdbr5ati 30780 dmdbr6ati 30781 |
Copyright terms: Public domain | W3C validator |