| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32279 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3945 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Cℋ cch 30865 HAtomscat 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-at 32274 |
| This theorem is referenced by: atsseq 32283 atcveq0 32284 chcv1 32291 chcv2 32292 hatomistici 32298 chrelati 32300 chrelat2i 32301 cvati 32302 cvexchlem 32304 cvp 32311 atnemeq0 32313 atcv0eq 32315 atcv1 32316 atexch 32317 atomli 32318 atoml2i 32319 atordi 32320 atcvatlem 32321 atcvati 32322 atcvat2i 32323 chirredlem1 32326 chirredlem2 32327 chirredlem3 32328 chirredlem4 32329 chirredi 32330 atcvat3i 32332 atcvat4i 32333 atdmd 32334 atmd 32335 atmd2 32336 atabsi 32337 mdsymlem2 32340 mdsymlem3 32341 mdsymlem5 32343 mdsymlem8 32346 atdmd2 32350 sumdmdi 32356 dmdbr4ati 32357 dmdbr5ati 32358 dmdbr6ati 32359 |
| Copyright terms: Public domain | W3C validator |