![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version |
Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atssch 32375 | . 2 ⊢ HAtoms ⊆ Cℋ | |
2 | 1 | sseli 4004 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Cℋ cch 30961 HAtomscat 30997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-at 32370 |
This theorem is referenced by: atsseq 32379 atcveq0 32380 chcv1 32387 chcv2 32388 hatomistici 32394 chrelati 32396 chrelat2i 32397 cvati 32398 cvexchlem 32400 cvp 32407 atnemeq0 32409 atcv0eq 32411 atcv1 32412 atexch 32413 atomli 32414 atoml2i 32415 atordi 32416 atcvatlem 32417 atcvati 32418 atcvat2i 32419 chirredlem1 32422 chirredlem2 32423 chirredlem3 32424 chirredlem4 32425 chirredi 32426 atcvat3i 32428 atcvat4i 32429 atdmd 32430 atmd 32431 atmd2 32432 atabsi 32433 mdsymlem2 32436 mdsymlem3 32437 mdsymlem5 32439 mdsymlem8 32442 atdmd2 32446 sumdmdi 32452 dmdbr4ati 32453 dmdbr5ati 32454 dmdbr6ati 32455 |
Copyright terms: Public domain | W3C validator |