| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32362 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3979 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Cℋ cch 30948 HAtomscat 30984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-ss 3968 df-at 32357 |
| This theorem is referenced by: atsseq 32366 atcveq0 32367 chcv1 32374 chcv2 32375 hatomistici 32381 chrelati 32383 chrelat2i 32384 cvati 32385 cvexchlem 32387 cvp 32394 atnemeq0 32396 atcv0eq 32398 atcv1 32399 atexch 32400 atomli 32401 atoml2i 32402 atordi 32403 atcvatlem 32404 atcvati 32405 atcvat2i 32406 chirredlem1 32409 chirredlem2 32410 chirredlem3 32411 chirredlem4 32412 chirredi 32413 atcvat3i 32415 atcvat4i 32416 atdmd 32417 atmd 32418 atmd2 32419 atabsi 32420 mdsymlem2 32423 mdsymlem3 32424 mdsymlem5 32426 mdsymlem8 32429 atdmd2 32433 sumdmdi 32439 dmdbr4ati 32440 dmdbr5ati 32441 dmdbr6ati 32442 |
| Copyright terms: Public domain | W3C validator |