| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32324 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3954 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Cℋ cch 30910 HAtomscat 30946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-ss 3943 df-at 32319 |
| This theorem is referenced by: atsseq 32328 atcveq0 32329 chcv1 32336 chcv2 32337 hatomistici 32343 chrelati 32345 chrelat2i 32346 cvati 32347 cvexchlem 32349 cvp 32356 atnemeq0 32358 atcv0eq 32360 atcv1 32361 atexch 32362 atomli 32363 atoml2i 32364 atordi 32365 atcvatlem 32366 atcvati 32367 atcvat2i 32368 chirredlem1 32371 chirredlem2 32372 chirredlem3 32373 chirredlem4 32374 chirredi 32375 atcvat3i 32377 atcvat4i 32378 atdmd 32379 atmd 32380 atmd2 32381 atabsi 32382 mdsymlem2 32385 mdsymlem3 32386 mdsymlem5 32388 mdsymlem8 32391 atdmd2 32395 sumdmdi 32401 dmdbr4ati 32402 dmdbr5ati 32403 dmdbr6ati 32404 |
| Copyright terms: Public domain | W3C validator |