| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32272 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3942 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Cℋ cch 30858 HAtomscat 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-at 32267 |
| This theorem is referenced by: atsseq 32276 atcveq0 32277 chcv1 32284 chcv2 32285 hatomistici 32291 chrelati 32293 chrelat2i 32294 cvati 32295 cvexchlem 32297 cvp 32304 atnemeq0 32306 atcv0eq 32308 atcv1 32309 atexch 32310 atomli 32311 atoml2i 32312 atordi 32313 atcvatlem 32314 atcvati 32315 atcvat2i 32316 chirredlem1 32319 chirredlem2 32320 chirredlem3 32321 chirredlem4 32322 chirredi 32323 atcvat3i 32325 atcvat4i 32326 atdmd 32327 atmd 32328 atmd2 32329 atabsi 32330 mdsymlem2 32333 mdsymlem3 32334 mdsymlem5 32336 mdsymlem8 32339 atdmd2 32343 sumdmdi 32349 dmdbr4ati 32350 dmdbr5ati 32351 dmdbr6ati 32352 |
| Copyright terms: Public domain | W3C validator |