| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32325 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3926 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Cℋ cch 30911 HAtomscat 30947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-ss 3915 df-at 32320 |
| This theorem is referenced by: atsseq 32329 atcveq0 32330 chcv1 32337 chcv2 32338 hatomistici 32344 chrelati 32346 chrelat2i 32347 cvati 32348 cvexchlem 32350 cvp 32357 atnemeq0 32359 atcv0eq 32361 atcv1 32362 atexch 32363 atomli 32364 atoml2i 32365 atordi 32366 atcvatlem 32367 atcvati 32368 atcvat2i 32369 chirredlem1 32372 chirredlem2 32373 chirredlem3 32374 chirredlem4 32375 chirredi 32376 atcvat3i 32378 atcvat4i 32379 atdmd 32380 atmd 32381 atmd2 32382 atabsi 32383 mdsymlem2 32386 mdsymlem3 32387 mdsymlem5 32389 mdsymlem8 32392 atdmd2 32396 sumdmdi 32402 dmdbr4ati 32403 dmdbr5ati 32404 dmdbr6ati 32405 |
| Copyright terms: Public domain | W3C validator |