| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version | ||
| Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atssch 32318 | . 2 ⊢ HAtoms ⊆ Cℋ | |
| 2 | 1 | sseli 3930 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Cℋ cch 30904 HAtomscat 30940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3919 df-at 32313 |
| This theorem is referenced by: atsseq 32322 atcveq0 32323 chcv1 32330 chcv2 32331 hatomistici 32337 chrelati 32339 chrelat2i 32340 cvati 32341 cvexchlem 32343 cvp 32350 atnemeq0 32352 atcv0eq 32354 atcv1 32355 atexch 32356 atomli 32357 atoml2i 32358 atordi 32359 atcvatlem 32360 atcvati 32361 atcvat2i 32362 chirredlem1 32365 chirredlem2 32366 chirredlem3 32367 chirredlem4 32368 chirredi 32369 atcvat3i 32371 atcvat4i 32372 atdmd 32373 atmd 32374 atmd2 32375 atabsi 32376 mdsymlem2 32379 mdsymlem3 32380 mdsymlem5 32382 mdsymlem8 32385 atdmd2 32389 sumdmdi 32395 dmdbr4ati 32396 dmdbr5ati 32397 dmdbr6ati 32398 |
| Copyright terms: Public domain | W3C validator |