Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atelch | Structured version Visualization version GIF version |
Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atelch | ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atssch 30606 | . 2 ⊢ HAtoms ⊆ Cℋ | |
2 | 1 | sseli 3913 | 1 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Cℋ cch 29192 HAtomscat 29228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-at 30601 |
This theorem is referenced by: atsseq 30610 atcveq0 30611 chcv1 30618 chcv2 30619 hatomistici 30625 chrelati 30627 chrelat2i 30628 cvati 30629 cvexchlem 30631 cvp 30638 atnemeq0 30640 atcv0eq 30642 atcv1 30643 atexch 30644 atomli 30645 atoml2i 30646 atordi 30647 atcvatlem 30648 atcvati 30649 atcvat2i 30650 chirredlem1 30653 chirredlem2 30654 chirredlem3 30655 chirredlem4 30656 chirredi 30657 atcvat3i 30659 atcvat4i 30660 atdmd 30661 atmd 30662 atmd2 30663 atabsi 30664 mdsymlem2 30667 mdsymlem3 30668 mdsymlem5 30670 mdsymlem8 30673 atdmd2 30677 sumdmdi 30683 dmdbr4ati 30684 dmdbr5ati 30685 dmdbr6ati 30686 |
Copyright terms: Public domain | W3C validator |