![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hatomistici | Structured version Visualization version GIF version |
Description: Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hatomistic.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3977 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ HAtoms | |
2 | atssch 29811 | . . . . 5 ⊢ HAtoms ⊆ Cℋ | |
3 | 1, 2 | sstri 3898 | . . . 4 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ |
4 | chsupcl 28808 | . . . 4 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ |
6 | hatomistic.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
7 | 6 | chshii 28695 | . . 3 ⊢ 𝐴 ∈ Sℋ |
8 | atelch 29812 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) | |
9 | 8 | anim1i 614 | . . . . . . 7 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
10 | sseq1 3913 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
11 | 10 | elrab 3618 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴)) |
12 | 10 | elrab 3618 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
13 | 9, 11, 12 | 3imtr4i 293 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
14 | 13 | ssriv 3893 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} |
15 | ssrab2 3977 | . . . . . 6 ⊢ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ | |
16 | chsupss 28810 | . . . . . 6 ⊢ (({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ∧ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ) → ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}))) | |
17 | 3, 15, 16 | mp2an 688 | . . . . 5 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴})) |
18 | 14, 17 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
19 | chsupid 28880 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | |
20 | 6, 19 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
21 | 18, 20 | sseqtri 3924 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
22 | elssuni 4774 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
23 | 11, 22 | sylbir 236 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
24 | chsupunss 28812 | . . . . . . . . . . 11 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
25 | 3, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
26 | 23, 25 | syl6ss 3901 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
27 | 26 | ex 413 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
28 | atne0 29813 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ) | |
29 | 28 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 ≠ 0ℋ) |
30 | ssin 4127 | . . . . . . . . . . . . . . 15 ⊢ ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
31 | 5 | chocini 28922 | . . . . . . . . . . . . . . . 16 ⊢ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
32 | 31 | sseq2i 3917 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ 0ℋ) |
33 | 30, 32 | bitr2i 277 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ⊆ 0ℋ ↔ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
34 | chle0 28911 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ Cℋ → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) | |
35 | 8, 34 | syl 17 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) |
36 | 33, 35 | syl5bbr 286 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ HAtoms → ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 = 0ℋ)) |
37 | 36 | biimpa 477 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ HAtoms ∧ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) → 𝑦 = 0ℋ) |
38 | 37 | expr 457 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 = 0ℋ)) |
39 | 38 | necon3ad 2997 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
40 | 29, 39 | mpd 15 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
41 | 40 | ex 413 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
42 | 27, 41 | syld 47 | . . . . . . 7 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
43 | imnan 400 | . . . . . . 7 ⊢ ((𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
44 | 42, 43 | sylib 219 | . . . . . 6 ⊢ (𝑦 ∈ HAtoms → ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
45 | ssin 4127 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
46 | 44, 45 | sylnib 329 | . . . . 5 ⊢ (𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
47 | 46 | nrex 3232 | . . . 4 ⊢ ¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
48 | 5 | choccli 28775 | . . . . . . 7 ⊢ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) ∈ Cℋ |
49 | 6, 48 | chincli 28928 | . . . . . 6 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ∈ Cℋ |
50 | 49 | hatomici 29827 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ≠ 0ℋ → ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
51 | 50 | necon1bi 3012 | . . . 4 ⊢ (¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) → (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ) |
52 | 47, 51 | ax-mp 5 | . . 3 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
53 | 5, 7, 21, 52 | omlsii 28871 | . 2 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
54 | 53 | eqcomi 2804 | 1 ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 {crab 3109 ∩ cin 3858 ⊆ wss 3859 ∪ cuni 4745 ‘cfv 6225 Cℋ cch 28397 ⊥cort 28398 ∨ℋ chsup 28402 0ℋc0h 28403 HAtomscat 28433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cc 9703 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 ax-addf 10462 ax-mulf 10463 ax-hilex 28467 ax-hfvadd 28468 ax-hvcom 28469 ax-hvass 28470 ax-hv0cl 28471 ax-hvaddid 28472 ax-hfvmul 28473 ax-hvmulid 28474 ax-hvmulass 28475 ax-hvdistr1 28476 ax-hvdistr2 28477 ax-hvmul0 28478 ax-hfi 28547 ax-his1 28550 ax-his2 28551 ax-his3 28552 ax-his4 28553 ax-hcompl 28670 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-omul 7958 df-er 8139 df-map 8258 df-pm 8259 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-card 9214 df-acn 9217 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-hom 16418 df-cco 16419 df-rest 16525 df-topn 16526 df-0g 16544 df-gsum 16545 df-topgen 16546 df-pt 16547 df-prds 16550 df-xrs 16604 df-qtop 16609 df-imas 16610 df-xps 16612 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-mulg 17982 df-cntz 18188 df-cmn 18635 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-fbas 20224 df-fg 20225 df-cnfld 20228 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-cld 21311 df-ntr 21312 df-cls 21313 df-nei 21390 df-cn 21519 df-cnp 21520 df-lm 21521 df-haus 21607 df-tx 21854 df-hmeo 22047 df-fil 22138 df-fm 22230 df-flim 22231 df-flf 22232 df-xms 22613 df-ms 22614 df-tms 22615 df-cfil 23541 df-cau 23542 df-cmet 23543 df-grpo 27961 df-gid 27962 df-ginv 27963 df-gdiv 27964 df-ablo 28013 df-vc 28027 df-nv 28060 df-va 28063 df-ba 28064 df-sm 28065 df-0v 28066 df-vs 28067 df-nmcv 28068 df-ims 28069 df-dip 28169 df-ssp 28190 df-ph 28281 df-cbn 28331 df-hnorm 28436 df-hba 28437 df-hvsub 28439 df-hlim 28440 df-hcau 28441 df-sh 28675 df-ch 28689 df-oc 28720 df-ch0 28721 df-span 28777 df-chsup 28779 df-cv 29747 df-at 29806 |
This theorem is referenced by: chpssati 29831 |
Copyright terms: Public domain | W3C validator |