| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hatomistici | Structured version Visualization version GIF version | ||
| Description: Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hatomistic.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4031 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ HAtoms | |
| 2 | atssch 32287 | . . . . 5 ⊢ HAtoms ⊆ Cℋ | |
| 3 | 1, 2 | sstri 3945 | . . . 4 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ |
| 4 | chsupcl 31284 | . . . 4 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ |
| 6 | hatomistic.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 7 | 6 | chshii 31171 | . . 3 ⊢ 𝐴 ∈ Sℋ |
| 8 | atelch 32288 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) | |
| 9 | 8 | anim1i 615 | . . . . . . 7 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
| 10 | sseq1 3961 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 11 | 10 | elrab 3648 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴)) |
| 12 | 10 | elrab 3648 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
| 13 | 9, 11, 12 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
| 14 | 13 | ssriv 3939 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} |
| 15 | ssrab2 4031 | . . . . . 6 ⊢ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ | |
| 16 | chsupss 31286 | . . . . . 6 ⊢ (({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ∧ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ) → ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}))) | |
| 17 | 3, 15, 16 | mp2an 692 | . . . . 5 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴})) |
| 18 | 14, 17 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
| 19 | chsupid 31356 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | |
| 20 | 6, 19 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
| 21 | 18, 20 | sseqtri 3984 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
| 22 | elssuni 4888 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
| 23 | 11, 22 | sylbir 235 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| 24 | chsupunss 31288 | . . . . . . . . . . 11 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
| 25 | 3, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| 26 | 23, 25 | sstrdi 3948 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 27 | 26 | ex 412 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
| 28 | atne0 32289 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ) | |
| 29 | 28 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 ≠ 0ℋ) |
| 30 | ssin 4190 | . . . . . . . . . . . . . . 15 ⊢ ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
| 31 | 5 | chocini 31398 | . . . . . . . . . . . . . . . 16 ⊢ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
| 32 | 31 | sseq2i 3965 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ 0ℋ) |
| 33 | 30, 32 | bitr2i 276 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ⊆ 0ℋ ↔ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 34 | chle0 31387 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ Cℋ → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) | |
| 35 | 8, 34 | syl 17 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) |
| 36 | 33, 35 | bitr3id 285 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ HAtoms → ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 = 0ℋ)) |
| 37 | 36 | biimpa 476 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ HAtoms ∧ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) → 𝑦 = 0ℋ) |
| 38 | 37 | expr 456 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 = 0ℋ)) |
| 39 | 38 | necon3ad 2938 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 40 | 29, 39 | mpd 15 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
| 41 | 40 | ex 412 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 42 | 27, 41 | syld 47 | . . . . . . 7 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 43 | imnan 399 | . . . . . . 7 ⊢ ((𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
| 44 | 42, 43 | sylib 218 | . . . . . 6 ⊢ (𝑦 ∈ HAtoms → ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 45 | ssin 4190 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
| 46 | 44, 45 | sylnib 328 | . . . . 5 ⊢ (𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 47 | 46 | nrex 3057 | . . . 4 ⊢ ¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
| 48 | 5 | choccli 31251 | . . . . . . 7 ⊢ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) ∈ Cℋ |
| 49 | 6, 48 | chincli 31404 | . . . . . 6 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ∈ Cℋ |
| 50 | 49 | hatomici 32303 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ≠ 0ℋ → ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
| 51 | 50 | necon1bi 2953 | . . . 4 ⊢ (¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) → (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ) |
| 52 | 47, 51 | ax-mp 5 | . . 3 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
| 53 | 5, 7, 21, 52 | omlsii 31347 | . 2 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
| 54 | 53 | eqcomi 2738 | 1 ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3394 ∩ cin 3902 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 Cℋ cch 30873 ⊥cort 30874 ∨ℋ chsup 30878 0ℋc0h 30879 HAtomscat 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 ax-hcompl 31146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cn 23112 df-cnp 23113 df-lm 23114 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-dip 30645 df-ssp 30666 df-ph 30757 df-cbn 30807 df-hnorm 30912 df-hba 30913 df-hvsub 30915 df-hlim 30916 df-hcau 30917 df-sh 31151 df-ch 31165 df-oc 31196 df-ch0 31197 df-span 31253 df-chsup 31255 df-cv 32223 df-at 32282 |
| This theorem is referenced by: chpssati 32307 |
| Copyright terms: Public domain | W3C validator |