![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hatomistici | Structured version Visualization version GIF version |
Description: Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hatomistic.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4077 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ HAtoms | |
2 | atssch 31864 | . . . . 5 ⊢ HAtoms ⊆ Cℋ | |
3 | 1, 2 | sstri 3991 | . . . 4 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ |
4 | chsupcl 30861 | . . . 4 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ |
6 | hatomistic.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
7 | 6 | chshii 30748 | . . 3 ⊢ 𝐴 ∈ Sℋ |
8 | atelch 31865 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) | |
9 | 8 | anim1i 614 | . . . . . . 7 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
10 | sseq1 4007 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
11 | 10 | elrab 3683 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴)) |
12 | 10 | elrab 3683 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
13 | 9, 11, 12 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
14 | 13 | ssriv 3986 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} |
15 | ssrab2 4077 | . . . . . 6 ⊢ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ | |
16 | chsupss 30863 | . . . . . 6 ⊢ (({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ∧ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ) → ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}))) | |
17 | 3, 15, 16 | mp2an 689 | . . . . 5 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴})) |
18 | 14, 17 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
19 | chsupid 30933 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | |
20 | 6, 19 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
21 | 18, 20 | sseqtri 4018 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
22 | elssuni 4941 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
23 | 11, 22 | sylbir 234 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
24 | chsupunss 30865 | . . . . . . . . . . 11 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
25 | 3, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
26 | 23, 25 | sstrdi 3994 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
27 | 26 | ex 412 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
28 | atne0 31866 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ) | |
29 | 28 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 ≠ 0ℋ) |
30 | ssin 4230 | . . . . . . . . . . . . . . 15 ⊢ ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
31 | 5 | chocini 30975 | . . . . . . . . . . . . . . . 16 ⊢ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
32 | 31 | sseq2i 4011 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ 0ℋ) |
33 | 30, 32 | bitr2i 276 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ⊆ 0ℋ ↔ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
34 | chle0 30964 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ Cℋ → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) | |
35 | 8, 34 | syl 17 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) |
36 | 33, 35 | bitr3id 285 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ HAtoms → ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 = 0ℋ)) |
37 | 36 | biimpa 476 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ HAtoms ∧ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) → 𝑦 = 0ℋ) |
38 | 37 | expr 456 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 = 0ℋ)) |
39 | 38 | necon3ad 2952 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
40 | 29, 39 | mpd 15 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
41 | 40 | ex 412 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
42 | 27, 41 | syld 47 | . . . . . . 7 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
43 | imnan 399 | . . . . . . 7 ⊢ ((𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
44 | 42, 43 | sylib 217 | . . . . . 6 ⊢ (𝑦 ∈ HAtoms → ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
45 | ssin 4230 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
46 | 44, 45 | sylnib 328 | . . . . 5 ⊢ (𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
47 | 46 | nrex 3073 | . . . 4 ⊢ ¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
48 | 5 | choccli 30828 | . . . . . . 7 ⊢ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) ∈ Cℋ |
49 | 6, 48 | chincli 30981 | . . . . . 6 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ∈ Cℋ |
50 | 49 | hatomici 31880 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ≠ 0ℋ → ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
51 | 50 | necon1bi 2968 | . . . 4 ⊢ (¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) → (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ) |
52 | 47, 51 | ax-mp 5 | . . 3 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
53 | 5, 7, 21, 52 | omlsii 30924 | . 2 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
54 | 53 | eqcomi 2740 | 1 ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 {crab 3431 ∩ cin 3947 ⊆ wss 3948 ∪ cuni 4908 ‘cfv 6543 Cℋ cch 30450 ⊥cort 30451 ∨ℋ chsup 30455 0ℋc0h 30456 HAtomscat 30486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cc 10434 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvmulass 30528 ax-hvdistr1 30529 ax-hvdistr2 30530 ax-hvmul0 30531 ax-hfi 30600 ax-his1 30603 ax-his2 30604 ax-his3 30605 ax-his4 30606 ax-hcompl 30723 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-omul 8475 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-sum 15638 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-cn 22952 df-cnp 22953 df-lm 22954 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cfil 25004 df-cau 25005 df-cmet 25006 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 df-ims 30122 df-dip 30222 df-ssp 30243 df-ph 30334 df-cbn 30384 df-hnorm 30489 df-hba 30490 df-hvsub 30492 df-hlim 30493 df-hcau 30494 df-sh 30728 df-ch 30742 df-oc 30773 df-ch0 30774 df-span 30830 df-chsup 30832 df-cv 31800 df-at 31859 |
This theorem is referenced by: chpssati 31884 |
Copyright terms: Public domain | W3C validator |