Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atcv0 | Structured version Visualization version GIF version |
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atcv0 | ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 30701 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 Cℋ cch 29291 0ℋc0h 29297 ⋖ℋ ccv 29326 HAtomscat 29327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-at 30700 |
This theorem is referenced by: atcveq0 30710 atcv0eq 30741 |
Copyright terms: Public domain | W3C validator |