| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atcv0 | Structured version Visualization version GIF version | ||
| Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atcv0 | ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ela 32314 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 Cℋ cch 30904 0ℋc0h 30910 ⋖ℋ ccv 30939 HAtomscat 30940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-at 32313 |
| This theorem is referenced by: atcveq0 32323 atcv0eq 32354 |
| Copyright terms: Public domain | W3C validator |