![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atcv0 | Structured version Visualization version GIF version |
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atcv0 | ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 32368 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 Cℋ cch 30958 0ℋc0h 30964 ⋖ℋ ccv 30993 HAtomscat 30994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-at 32367 |
This theorem is referenced by: atcveq0 32377 atcv0eq 32408 |
Copyright terms: Public domain | W3C validator |