HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcv0 Structured version   Visualization version   GIF version

Theorem atcv0 31170
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcv0 (𝐴 ∈ HAtoms → 0 𝐴)

Proof of Theorem atcv0
StepHypRef Expression
1 ela 31167 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21simprbi 497 1 (𝐴 ∈ HAtoms → 0 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5103   C cch 29757  0c0h 29763   ccv 29792  HAtomscat 29793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-br 5104  df-at 31166
This theorem is referenced by:  atcveq0  31176  atcv0eq  31207
  Copyright terms: Public domain W3C validator