HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcv0 Structured version   Visualization version   GIF version

Theorem atcv0 32374
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcv0 (𝐴 ∈ HAtoms → 0 𝐴)

Proof of Theorem atcv0
StepHypRef Expression
1 ela 32371 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21simprbi 496 1 (𝐴 ∈ HAtoms → 0 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166   C cch 30961  0c0h 30967   ccv 30996  HAtomscat 30997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-at 32370
This theorem is referenced by:  atcveq0  32380  atcv0eq  32411
  Copyright terms: Public domain W3C validator