HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcv0 Structured version   Visualization version   GIF version

Theorem atcv0 32278
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcv0 (𝐴 ∈ HAtoms → 0 𝐴)

Proof of Theorem atcv0
StepHypRef Expression
1 ela 32275 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21simprbi 496 1 (𝐴 ∈ HAtoms → 0 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110   C cch 30865  0c0h 30871   ccv 30900  HAtomscat 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-at 32274
This theorem is referenced by:  atcveq0  32284  atcv0eq  32315
  Copyright terms: Public domain W3C validator