HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcv0 Structured version   Visualization version   GIF version

Theorem atcv0 30704
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcv0 (𝐴 ∈ HAtoms → 0 𝐴)

Proof of Theorem atcv0
StepHypRef Expression
1 ela 30701 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21simprbi 497 1 (𝐴 ∈ HAtoms → 0 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074   C cch 29291  0c0h 29297   ccv 29326  HAtomscat 29327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-at 30700
This theorem is referenced by:  atcveq0  30710  atcv0eq  30741
  Copyright terms: Public domain W3C validator