![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shatomistici | Structured version Visualization version GIF version |
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shatomistic.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shatomistici | ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . 4 ⊢ (𝑦 = 0ℎ → (𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ↔ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) | |
2 | shatomistic.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 31246 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
4 | spansnsh 31593 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ Sℋ ) | |
5 | spanid 31379 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ Sℋ → (span‘(span‘{𝑦})) = (span‘{𝑦})) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
8 | spansna 32382 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) | |
9 | 3, 8 | sylan 579 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) |
10 | spansnss 31603 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → (span‘{𝑦}) ⊆ 𝐴) | |
11 | 2, 10 | mpan 689 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → (span‘{𝑦}) ⊆ 𝐴) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ 𝐴) |
13 | sseq1 4034 | . . . . . . . . 9 ⊢ (𝑥 = (span‘{𝑦}) → (𝑥 ⊆ 𝐴 ↔ (span‘{𝑦}) ⊆ 𝐴)) | |
14 | 13 | elrab 3708 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ ((span‘{𝑦}) ∈ HAtoms ∧ (span‘{𝑦}) ⊆ 𝐴)) |
15 | 9, 12, 14 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
16 | elssuni 4961 | . . . . . . 7 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
17 | atssch 32375 | . . . . . . . . . . 11 ⊢ HAtoms ⊆ Cℋ | |
18 | chsssh 31257 | . . . . . . . . . . 11 ⊢ Cℋ ⊆ Sℋ | |
19 | 17, 18 | sstri 4018 | . . . . . . . . . 10 ⊢ HAtoms ⊆ Sℋ |
20 | rabss2 4101 | . . . . . . . . . 10 ⊢ (HAtoms ⊆ Sℋ → {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
21 | uniss 4939 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
22 | 19, 20, 21 | mp2b 10 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} |
23 | unimax 4968 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Sℋ → ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴) | |
24 | 2, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴 |
25 | 2 | shssii 31245 | . . . . . . . . . 10 ⊢ 𝐴 ⊆ ℋ |
26 | 24, 25 | eqsstri 4043 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
27 | 22, 26 | sstri 4018 | . . . . . . . 8 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
28 | spanss 31380 | . . . . . . . 8 ⊢ ((∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
29 | 27, 28 | mpan 689 | . . . . . . 7 ⊢ ((span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
30 | 15, 16, 29 | 3syl 18 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
31 | 7, 30 | eqsstrrd 4048 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
32 | spansnid 31595 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦})) | |
33 | 3, 32 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘{𝑦})) |
34 | 33 | adantr 480 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘{𝑦})) |
35 | 31, 34 | sseldd 4009 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
36 | spancl 31368 | . . . . . 6 ⊢ (∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ ) | |
37 | sh0 31248 | . . . . . 6 ⊢ ((span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
38 | 27, 36, 37 | mp2b 10 | . . . . 5 ⊢ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
40 | 1, 35, 39 | pm2.61ne 3033 | . . 3 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
41 | 40 | ssriv 4012 | . 2 ⊢ 𝐴 ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
42 | spanss 31380 | . . . 4 ⊢ ((∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴})) | |
43 | 26, 22, 42 | mp2an 691 | . . 3 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) |
44 | 24 | fveq2i 6923 | . . . 4 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = (span‘𝐴) |
45 | spanid 31379 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
46 | 2, 45 | ax-mp 5 | . . . 4 ⊢ (span‘𝐴) = 𝐴 |
47 | 44, 46 | eqtri 2768 | . . 3 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
48 | 43, 47 | sseqtri 4045 | . 2 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
49 | 41, 48 | eqssi 4025 | 1 ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 ‘cfv 6573 ℋchba 30951 0ℎc0v 30956 Sℋ csh 30960 Cℋ cch 30961 spancspn 30964 HAtomscat 30997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ssp 30754 df-ph 30845 df-cbn 30895 df-hnorm 31000 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 df-span 31341 df-cv 32311 df-at 32370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |