HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shatomistici Structured version   Visualization version   GIF version

Theorem shatomistici 32340
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
shatomistic.1 𝐴S
Assertion
Ref Expression
shatomistici 𝐴 = (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem shatomistici
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . 4 (𝑦 = 0 → (𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ↔ 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})))
2 shatomistic.1 . . . . . . . . 9 𝐴S
32sheli 31193 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
4 spansnsh 31540 . . . . . . . 8 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
5 spanid 31326 . . . . . . . 8 ((span‘{𝑦}) ∈ S → (span‘(span‘{𝑦})) = (span‘{𝑦}))
63, 4, 53syl 18 . . . . . . 7 (𝑦𝐴 → (span‘(span‘{𝑦})) = (span‘{𝑦}))
76adantr 480 . . . . . 6 ((𝑦𝐴𝑦 ≠ 0) → (span‘(span‘{𝑦})) = (span‘{𝑦}))
8 spansna 32329 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
93, 8sylan 580 . . . . . . . 8 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
10 spansnss 31550 . . . . . . . . . 10 ((𝐴S𝑦𝐴) → (span‘{𝑦}) ⊆ 𝐴)
112, 10mpan 690 . . . . . . . . 9 (𝑦𝐴 → (span‘{𝑦}) ⊆ 𝐴)
1211adantr 480 . . . . . . . 8 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ⊆ 𝐴)
13 sseq1 3969 . . . . . . . . 9 (𝑥 = (span‘{𝑦}) → (𝑥𝐴 ↔ (span‘{𝑦}) ⊆ 𝐴))
1413elrab 3656 . . . . . . . 8 ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ↔ ((span‘{𝑦}) ∈ HAtoms ∧ (span‘{𝑦}) ⊆ 𝐴))
159, 12, 14sylanbrc 583 . . . . . . 7 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
16 elssuni 4897 . . . . . . 7 ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → (span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
17 atssch 32322 . . . . . . . . . . 11 HAtoms ⊆ C
18 chsssh 31204 . . . . . . . . . . 11 CS
1917, 18sstri 3953 . . . . . . . . . 10 HAtoms ⊆ S
20 rabss2 4037 . . . . . . . . . 10 (HAtoms ⊆ S → {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴})
21 uniss 4875 . . . . . . . . . 10 ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴} → {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴})
2219, 20, 21mp2b 10 . . . . . . . . 9 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴}
23 unimax 4904 . . . . . . . . . . 11 (𝐴S {𝑥S𝑥𝐴} = 𝐴)
242, 23ax-mp 5 . . . . . . . . . 10 {𝑥S𝑥𝐴} = 𝐴
252shssii 31192 . . . . . . . . . 10 𝐴 ⊆ ℋ
2624, 25eqsstri 3990 . . . . . . . . 9 {𝑥S𝑥𝐴} ⊆ ℋ
2722, 26sstri 3953 . . . . . . . 8 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ
28 spanss 31327 . . . . . . . 8 (( {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ ∧ (span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
2927, 28mpan 690 . . . . . . 7 ((span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
3015, 16, 293syl 18 . . . . . 6 ((𝑦𝐴𝑦 ≠ 0) → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
317, 30eqsstrrd 3979 . . . . 5 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
32 spansnid 31542 . . . . . . 7 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
333, 32syl 17 . . . . . 6 (𝑦𝐴𝑦 ∈ (span‘{𝑦}))
3433adantr 480 . . . . 5 ((𝑦𝐴𝑦 ≠ 0) → 𝑦 ∈ (span‘{𝑦}))
3531, 34sseldd 3944 . . . 4 ((𝑦𝐴𝑦 ≠ 0) → 𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
36 spancl 31315 . . . . . 6 ( {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ → (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ S )
37 sh0 31195 . . . . . 6 ((span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ S → 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
3827, 36, 37mp2b 10 . . . . 5 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
3938a1i 11 . . . 4 (𝑦𝐴 → 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
401, 35, 39pm2.61ne 3010 . . 3 (𝑦𝐴𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
4140ssriv 3947 . 2 𝐴 ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
42 spanss 31327 . . . 4 (( {𝑥S𝑥𝐴} ⊆ ℋ ∧ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴}) → (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ (span‘ {𝑥S𝑥𝐴}))
4326, 22, 42mp2an 692 . . 3 (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ (span‘ {𝑥S𝑥𝐴})
4424fveq2i 6843 . . . 4 (span‘ {𝑥S𝑥𝐴}) = (span‘𝐴)
45 spanid 31326 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
462, 45ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
4744, 46eqtri 2752 . . 3 (span‘ {𝑥S𝑥𝐴}) = 𝐴
4843, 47sseqtri 3992 . 2 (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ 𝐴
4941, 48eqssi 3960 1 𝐴 = (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3402  wss 3911  {csn 4585   cuni 4867  cfv 6499  chba 30898  0c0v 30903   S csh 30907   C cch 30908  spancspn 30911  HAtomscat 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064  ax-hcompl 31181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ssp 30701  df-ph 30792  df-cbn 30842  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-hlim 30951  df-hcau 30952  df-sh 31186  df-ch 31200  df-oc 31231  df-ch0 31232  df-span 31288  df-cv 32258  df-at 32317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator