HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shatomistici Structured version   Visualization version   GIF version

Theorem shatomistici 32380
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
shatomistic.1 𝐴S
Assertion
Ref Expression
shatomistici 𝐴 = (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem shatomistici
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2829 . . . 4 (𝑦 = 0 → (𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ↔ 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})))
2 shatomistic.1 . . . . . . . . 9 𝐴S
32sheli 31233 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
4 spansnsh 31580 . . . . . . . 8 (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ S )
5 spanid 31366 . . . . . . . 8 ((span‘{𝑦}) ∈ S → (span‘(span‘{𝑦})) = (span‘{𝑦}))
63, 4, 53syl 18 . . . . . . 7 (𝑦𝐴 → (span‘(span‘{𝑦})) = (span‘{𝑦}))
76adantr 480 . . . . . 6 ((𝑦𝐴𝑦 ≠ 0) → (span‘(span‘{𝑦})) = (span‘{𝑦}))
8 spansna 32369 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
93, 8sylan 580 . . . . . . . 8 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ∈ HAtoms)
10 spansnss 31590 . . . . . . . . . 10 ((𝐴S𝑦𝐴) → (span‘{𝑦}) ⊆ 𝐴)
112, 10mpan 690 . . . . . . . . 9 (𝑦𝐴 → (span‘{𝑦}) ⊆ 𝐴)
1211adantr 480 . . . . . . . 8 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ⊆ 𝐴)
13 sseq1 4009 . . . . . . . . 9 (𝑥 = (span‘{𝑦}) → (𝑥𝐴 ↔ (span‘{𝑦}) ⊆ 𝐴))
1413elrab 3692 . . . . . . . 8 ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ↔ ((span‘{𝑦}) ∈ HAtoms ∧ (span‘{𝑦}) ⊆ 𝐴))
159, 12, 14sylanbrc 583 . . . . . . 7 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
16 elssuni 4937 . . . . . . 7 ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → (span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
17 atssch 32362 . . . . . . . . . . 11 HAtoms ⊆ C
18 chsssh 31244 . . . . . . . . . . 11 CS
1917, 18sstri 3993 . . . . . . . . . 10 HAtoms ⊆ S
20 rabss2 4078 . . . . . . . . . 10 (HAtoms ⊆ S → {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴})
21 uniss 4915 . . . . . . . . . 10 ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴} → {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴})
2219, 20, 21mp2b 10 . . . . . . . . 9 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴}
23 unimax 4944 . . . . . . . . . . 11 (𝐴S {𝑥S𝑥𝐴} = 𝐴)
242, 23ax-mp 5 . . . . . . . . . 10 {𝑥S𝑥𝐴} = 𝐴
252shssii 31232 . . . . . . . . . 10 𝐴 ⊆ ℋ
2624, 25eqsstri 4030 . . . . . . . . 9 {𝑥S𝑥𝐴} ⊆ ℋ
2722, 26sstri 3993 . . . . . . . 8 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ
28 spanss 31367 . . . . . . . 8 (( {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ ∧ (span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
2927, 28mpan 690 . . . . . . 7 ((span‘{𝑦}) ⊆ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
3015, 16, 293syl 18 . . . . . 6 ((𝑦𝐴𝑦 ≠ 0) → (span‘(span‘{𝑦})) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
317, 30eqsstrrd 4019 . . . . 5 ((𝑦𝐴𝑦 ≠ 0) → (span‘{𝑦}) ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
32 spansnid 31582 . . . . . . 7 (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦}))
333, 32syl 17 . . . . . 6 (𝑦𝐴𝑦 ∈ (span‘{𝑦}))
3433adantr 480 . . . . 5 ((𝑦𝐴𝑦 ≠ 0) → 𝑦 ∈ (span‘{𝑦}))
3531, 34sseldd 3984 . . . 4 ((𝑦𝐴𝑦 ≠ 0) → 𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
36 spancl 31355 . . . . . 6 ( {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ℋ → (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ S )
37 sh0 31235 . . . . . 6 ((span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ S → 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
3827, 36, 37mp2b 10 . . . . 5 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
3938a1i 11 . . . 4 (𝑦𝐴 → 0 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
401, 35, 39pm2.61ne 3027 . . 3 (𝑦𝐴𝑦 ∈ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
4140ssriv 3987 . 2 𝐴 ⊆ (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
42 spanss 31367 . . . 4 (( {𝑥S𝑥𝐴} ⊆ ℋ ∧ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥S𝑥𝐴}) → (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ (span‘ {𝑥S𝑥𝐴}))
4326, 22, 42mp2an 692 . . 3 (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ (span‘ {𝑥S𝑥𝐴})
4424fveq2i 6909 . . . 4 (span‘ {𝑥S𝑥𝐴}) = (span‘𝐴)
45 spanid 31366 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
462, 45ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
4744, 46eqtri 2765 . . 3 (span‘ {𝑥S𝑥𝐴}) = 𝐴
4843, 47sseqtri 4032 . 2 (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ 𝐴
4941, 48eqssi 4000 1 𝐴 = (span‘ {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951  {csn 4626   cuni 4907  cfv 6561  chba 30938  0c0v 30943   S csh 30947   C cch 30948  spancspn 30951  HAtomscat 30984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-span 31328  df-cv 32298  df-at 32357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator