| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shatomistici | Structured version Visualization version GIF version | ||
| Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shatomistic.1 | ⊢ 𝐴 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shatomistici | ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑦 = 0ℎ → (𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ↔ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) | |
| 2 | shatomistic.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ | |
| 3 | 2 | sheli 31194 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
| 4 | spansnsh 31541 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ Sℋ ) | |
| 5 | spanid 31327 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ Sℋ → (span‘(span‘{𝑦})) = (span‘{𝑦})) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
| 8 | spansna 32330 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) | |
| 9 | 3, 8 | sylan 580 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) |
| 10 | spansnss 31551 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → (span‘{𝑦}) ⊆ 𝐴) | |
| 11 | 2, 10 | mpan 690 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → (span‘{𝑦}) ⊆ 𝐴) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ 𝐴) |
| 13 | sseq1 3955 | . . . . . . . . 9 ⊢ (𝑥 = (span‘{𝑦}) → (𝑥 ⊆ 𝐴 ↔ (span‘{𝑦}) ⊆ 𝐴)) | |
| 14 | 13 | elrab 3642 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ ((span‘{𝑦}) ∈ HAtoms ∧ (span‘{𝑦}) ⊆ 𝐴)) |
| 15 | 9, 12, 14 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| 16 | elssuni 4887 | . . . . . . 7 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
| 17 | atssch 32323 | . . . . . . . . . . 11 ⊢ HAtoms ⊆ Cℋ | |
| 18 | chsssh 31205 | . . . . . . . . . . 11 ⊢ Cℋ ⊆ Sℋ | |
| 19 | 17, 18 | sstri 3939 | . . . . . . . . . 10 ⊢ HAtoms ⊆ Sℋ |
| 20 | rabss2 4024 | . . . . . . . . . 10 ⊢ (HAtoms ⊆ Sℋ → {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
| 21 | uniss 4864 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
| 22 | 19, 20, 21 | mp2b 10 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} |
| 23 | unimax 4893 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Sℋ → ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴) | |
| 24 | 2, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴 |
| 25 | 2 | shssii 31193 | . . . . . . . . . 10 ⊢ 𝐴 ⊆ ℋ |
| 26 | 24, 25 | eqsstri 3976 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
| 27 | 22, 26 | sstri 3939 | . . . . . . . 8 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
| 28 | spanss 31328 | . . . . . . . 8 ⊢ ((∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
| 29 | 27, 28 | mpan 690 | . . . . . . 7 ⊢ ((span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 30 | 15, 16, 29 | 3syl 18 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 31 | 7, 30 | eqsstrrd 3965 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 32 | spansnid 31543 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦})) | |
| 33 | 3, 32 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘{𝑦})) |
| 34 | 33 | adantr 480 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘{𝑦})) |
| 35 | 31, 34 | sseldd 3930 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 36 | spancl 31316 | . . . . . 6 ⊢ (∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ ) | |
| 37 | sh0 31196 | . . . . . 6 ⊢ ((span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
| 38 | 27, 36, 37 | mp2b 10 | . . . . 5 ⊢ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| 39 | 38 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 40 | 1, 35, 39 | pm2.61ne 3013 | . . 3 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
| 41 | 40 | ssriv 3933 | . 2 ⊢ 𝐴 ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| 42 | spanss 31328 | . . . 4 ⊢ ((∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴})) | |
| 43 | 26, 22, 42 | mp2an 692 | . . 3 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) |
| 44 | 24 | fveq2i 6825 | . . . 4 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = (span‘𝐴) |
| 45 | spanid 31327 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
| 46 | 2, 45 | ax-mp 5 | . . . 4 ⊢ (span‘𝐴) = 𝐴 |
| 47 | 44, 46 | eqtri 2754 | . . 3 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
| 48 | 43, 47 | sseqtri 3978 | . 2 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
| 49 | 41, 48 | eqssi 3946 | 1 ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3897 {csn 4573 ∪ cuni 4856 ‘cfv 6481 ℋchba 30899 0ℎc0v 30904 Sℋ csh 30908 Cℋ cch 30909 spancspn 30912 HAtomscat 30945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-cn 23142 df-cnp 23143 df-lm 23144 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cfil 25182 df-cau 25183 df-cmet 25184 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ssp 30702 df-ph 30793 df-cbn 30843 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 df-ch0 31233 df-span 31289 df-cv 32259 df-at 32318 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |