Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shatomistici | Structured version Visualization version GIF version |
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shatomistic.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shatomistici | ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝑦 = 0ℎ → (𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ↔ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) | |
2 | shatomistic.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 29477 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
4 | spansnsh 29824 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (span‘{𝑦}) ∈ Sℋ ) | |
5 | spanid 29610 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ Sℋ → (span‘(span‘{𝑦})) = (span‘{𝑦})) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) = (span‘{𝑦})) |
8 | spansna 30613 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) | |
9 | 3, 8 | sylan 579 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ HAtoms) |
10 | spansnss 29834 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → (span‘{𝑦}) ⊆ 𝐴) | |
11 | 2, 10 | mpan 686 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → (span‘{𝑦}) ⊆ 𝐴) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ 𝐴) |
13 | sseq1 3942 | . . . . . . . . 9 ⊢ (𝑥 = (span‘{𝑦}) → (𝑥 ⊆ 𝐴 ↔ (span‘{𝑦}) ⊆ 𝐴)) | |
14 | 13 | elrab 3617 | . . . . . . . 8 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ ((span‘{𝑦}) ∈ HAtoms ∧ (span‘{𝑦}) ⊆ 𝐴)) |
15 | 9, 12, 14 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
16 | elssuni 4868 | . . . . . . 7 ⊢ ((span‘{𝑦}) ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
17 | atssch 30606 | . . . . . . . . . . 11 ⊢ HAtoms ⊆ Cℋ | |
18 | chsssh 29488 | . . . . . . . . . . 11 ⊢ Cℋ ⊆ Sℋ | |
19 | 17, 18 | sstri 3926 | . . . . . . . . . 10 ⊢ HAtoms ⊆ Sℋ |
20 | rabss2 4007 | . . . . . . . . . 10 ⊢ (HAtoms ⊆ Sℋ → {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
21 | uniss 4844 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) | |
22 | 19, 20, 21 | mp2b 10 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} |
23 | unimax 4874 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Sℋ → ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴) | |
24 | 2, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} = 𝐴 |
25 | 2 | shssii 29476 | . . . . . . . . . 10 ⊢ 𝐴 ⊆ ℋ |
26 | 24, 25 | eqsstri 3951 | . . . . . . . . 9 ⊢ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
27 | 22, 26 | sstri 3926 | . . . . . . . 8 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ |
28 | spanss 29611 | . . . . . . . 8 ⊢ ((∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ (span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
29 | 27, 28 | mpan 686 | . . . . . . 7 ⊢ ((span‘{𝑦}) ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
30 | 15, 16, 29 | 3syl 18 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘(span‘{𝑦})) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
31 | 7, 30 | eqsstrrd 3956 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → (span‘{𝑦}) ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
32 | spansnid 29826 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝑦 ∈ (span‘{𝑦})) | |
33 | 3, 32 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘{𝑦})) |
34 | 33 | adantr 480 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘{𝑦})) |
35 | 31, 34 | sseldd 3918 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ) → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
36 | spancl 29599 | . . . . . 6 ⊢ (∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ ) | |
37 | sh0 29479 | . . . . . 6 ⊢ ((span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Sℋ → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
38 | 27, 36, 37 | mp2b 10 | . . . . 5 ⊢ 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → 0ℎ ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
40 | 1, 35, 39 | pm2.61ne 3029 | . . 3 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
41 | 40 | ssriv 3921 | . 2 ⊢ 𝐴 ⊆ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
42 | spanss 29611 | . . . 4 ⊢ ((∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴} ⊆ ℋ ∧ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) → (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴})) | |
43 | 26, 22, 42 | mp2an 688 | . . 3 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) |
44 | 24 | fveq2i 6759 | . . . 4 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = (span‘𝐴) |
45 | spanid 29610 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
46 | 2, 45 | ax-mp 5 | . . . 4 ⊢ (span‘𝐴) = 𝐴 |
47 | 44, 46 | eqtri 2766 | . . 3 ⊢ (span‘∪ {𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
48 | 43, 47 | sseqtri 3953 | . 2 ⊢ (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
49 | 41, 48 | eqssi 3933 | 1 ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ‘cfv 6418 ℋchba 29182 0ℎc0v 29187 Sℋ csh 29191 Cℋ cch 29192 spancspn 29195 HAtomscat 29228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-span 29572 df-cv 30542 df-at 30601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |