MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4 Structured version   Visualization version   GIF version

Theorem ac4 10466
Description: Equivalent of Axiom of Choice. We do not insist that 𝑓 be a function. However, Theorem ac5 10468, derived from this one, shows that this form of the axiom does imply that at least one such set 𝑓 whose existence we assert is in fact a function. Axiom of Choice of [TakeutiZaring] p. 83.

Takeuti and Zaring call this "weak choice" in contrast to "strong choice" 𝐹𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable 𝐹 and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice", Fundamenta Mathematica, 71, 43-62 (1971).

Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 10482. (Contributed by NM, 21-Jul-1996.)

Assertion
Ref Expression
ac4 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
Distinct variable group:   𝑥,𝑧,𝑓

Proof of Theorem ac4
StepHypRef Expression
1 dfac3 10112 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
21axaci 10459 1 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1773  wcel 2098  wne 2932  wral 3053  c0 4314  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ac 10107
This theorem is referenced by:  ac4c  10467
  Copyright terms: Public domain W3C validator