| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version | ||
| Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchac | ⊢ (GCH = V → CHOICE) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 2 | omex 9657 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 3 | 1, 2 | unex 7738 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
| 4 | ssun2 4154 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
| 5 | ssdomg 9014 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
| 6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
| 7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
| 8 | 3, 7 | eleqtrrid 2841 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
| 9 | 3 | pwex 5350 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
| 10 | 9, 7 | eleqtrrid 2841 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
| 11 | gchacg 10694 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
| 12 | 6, 8, 10, 11 | mp3an2i 1468 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
| 13 | 3 | canth2 9144 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
| 14 | sdomdom 8994 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
| 16 | numdom 10052 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
| 17 | 12, 15, 16 | sylancl 586 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
| 18 | ssun1 4153 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
| 19 | ssnum 10053 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
| 21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
| 22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 23 | 22 | eqrdv 2733 | . 2 ⊢ (GCH = V → dom card = V) |
| 24 | dfac10 10152 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 25 | 23, 24 | sylibr 234 | 1 ⊢ (GCH = V → CHOICE) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 dom cdm 5654 ωcom 7861 ≼ cdom 8957 ≺ csdm 8958 cardccrd 9949 CHOICEwac 10129 GCHcgch 10634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-oexp 8486 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-har 9571 df-wdom 9579 df-cnf 9676 df-dju 9915 df-card 9953 df-ac 10130 df-fin4 10301 df-gch 10635 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |