Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version |
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchac | ⊢ (GCH = V → CHOICE) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
2 | omex 9469 | . . . . . . . . 9 ⊢ ω ∈ V | |
3 | 1, 2 | unex 7634 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
4 | ssun2 4117 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
5 | ssdomg 8836 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
8 | 3, 7 | eleqtrrid 2845 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
9 | 3 | pwex 5316 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
10 | 9, 7 | eleqtrrid 2845 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
11 | gchacg 10506 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
12 | 6, 8, 10, 11 | mp3an2i 1465 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
13 | 3 | canth2 8970 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
14 | sdomdom 8816 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
16 | numdom 9864 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
17 | 12, 15, 16 | sylancl 586 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
18 | ssun1 4116 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
19 | ssnum 9865 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
22 | 20, 21 | 2thd 264 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
23 | 22 | eqrdv 2735 | . 2 ⊢ (GCH = V → dom card = V) |
24 | dfac10 9963 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
25 | 23, 24 | sylibr 233 | 1 ⊢ (GCH = V → CHOICE) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3894 ⊆ wss 3896 𝒫 cpw 4543 class class class wbr 5085 dom cdm 5605 ωcom 7755 ≼ cdom 8777 ≺ csdm 8778 cardccrd 9761 CHOICEwac 9941 GCHcgch 10446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-seqom 8324 df-1o 8342 df-2o 8343 df-oadd 8346 df-omul 8347 df-oexp 8348 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-oi 9337 df-har 9384 df-wdom 9392 df-cnf 9488 df-dju 9727 df-card 9765 df-ac 9942 df-fin4 10113 df-gch 10447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |