MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchac Structured version   Visualization version   GIF version

Theorem gchac 10610
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchac (GCH = V → CHOICE)

Proof of Theorem gchac
StepHypRef Expression
1 vex 3448 . . . . . . . . 9 𝑥 ∈ V
2 omex 9572 . . . . . . . . 9 ω ∈ V
31, 2unex 7700 . . . . . . . 8 (𝑥 ∪ ω) ∈ V
4 ssun2 4138 . . . . . . . 8 ω ⊆ (𝑥 ∪ ω)
5 ssdomg 8948 . . . . . . . 8 ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω)))
63, 4, 5mp2 9 . . . . . . 7 ω ≼ (𝑥 ∪ ω)
7 id 22 . . . . . . . 8 (GCH = V → GCH = V)
83, 7eleqtrrid 2835 . . . . . . 7 (GCH = V → (𝑥 ∪ ω) ∈ GCH)
93pwex 5330 . . . . . . . 8 𝒫 (𝑥 ∪ ω) ∈ V
109, 7eleqtrrid 2835 . . . . . . 7 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH)
11 gchacg 10609 . . . . . . 7 ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card)
126, 8, 10, 11mp3an2i 1468 . . . . . 6 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card)
133canth2 9071 . . . . . . 7 (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω)
14 sdomdom 8928 . . . . . . 7 ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω))
1513, 14ax-mp 5 . . . . . 6 (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)
16 numdom 9967 . . . . . 6 ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card)
1712, 15, 16sylancl 586 . . . . 5 (GCH = V → (𝑥 ∪ ω) ∈ dom card)
18 ssun1 4137 . . . . 5 𝑥 ⊆ (𝑥 ∪ ω)
19 ssnum 9968 . . . . 5 (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card)
2017, 18, 19sylancl 586 . . . 4 (GCH = V → 𝑥 ∈ dom card)
211a1i 11 . . . 4 (GCH = V → 𝑥 ∈ V)
2220, 212thd 265 . . 3 (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
2322eqrdv 2727 . 2 (GCH = V → dom card = V)
24 dfac10 10067 . 2 (CHOICE ↔ dom card = V)
2523, 24sylibr 234 1 (GCH = V → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  𝒫 cpw 4559   class class class wbr 5102  dom cdm 5631  ωcom 7822  cdom 8893  csdm 8894  cardccrd 9864  CHOICEwac 10044  GCHcgch 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-har 9486  df-wdom 9494  df-cnf 9591  df-dju 9830  df-card 9868  df-ac 10045  df-fin4 10216  df-gch 10550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator