MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchac Structured version   Visualization version   GIF version

Theorem gchac 10750
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchac (GCH = V → CHOICE)

Proof of Theorem gchac
StepHypRef Expression
1 vex 3492 . . . . . . . . 9 𝑥 ∈ V
2 omex 9712 . . . . . . . . 9 ω ∈ V
31, 2unex 7779 . . . . . . . 8 (𝑥 ∪ ω) ∈ V
4 ssun2 4202 . . . . . . . 8 ω ⊆ (𝑥 ∪ ω)
5 ssdomg 9060 . . . . . . . 8 ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω)))
63, 4, 5mp2 9 . . . . . . 7 ω ≼ (𝑥 ∪ ω)
7 id 22 . . . . . . . 8 (GCH = V → GCH = V)
83, 7eleqtrrid 2851 . . . . . . 7 (GCH = V → (𝑥 ∪ ω) ∈ GCH)
93pwex 5398 . . . . . . . 8 𝒫 (𝑥 ∪ ω) ∈ V
109, 7eleqtrrid 2851 . . . . . . 7 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH)
11 gchacg 10749 . . . . . . 7 ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card)
126, 8, 10, 11mp3an2i 1466 . . . . . 6 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card)
133canth2 9196 . . . . . . 7 (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω)
14 sdomdom 9040 . . . . . . 7 ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω))
1513, 14ax-mp 5 . . . . . 6 (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)
16 numdom 10107 . . . . . 6 ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card)
1712, 15, 16sylancl 585 . . . . 5 (GCH = V → (𝑥 ∪ ω) ∈ dom card)
18 ssun1 4201 . . . . 5 𝑥 ⊆ (𝑥 ∪ ω)
19 ssnum 10108 . . . . 5 (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card)
2017, 18, 19sylancl 585 . . . 4 (GCH = V → 𝑥 ∈ dom card)
211a1i 11 . . . 4 (GCH = V → 𝑥 ∈ V)
2220, 212thd 265 . . 3 (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
2322eqrdv 2738 . 2 (GCH = V → dom card = V)
24 dfac10 10207 . 2 (CHOICE ↔ dom card = V)
2523, 24sylibr 234 1 (GCH = V → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  ωcom 7903  cdom 9001  csdm 9002  cardccrd 10004  CHOICEwac 10184  GCHcgch 10689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-har 9626  df-wdom 9634  df-cnf 9731  df-dju 9970  df-card 10008  df-ac 10185  df-fin4 10356  df-gch 10690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator