MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchac Structured version   Visualization version   GIF version

Theorem gchac 10507
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchac (GCH = V → CHOICE)

Proof of Theorem gchac
StepHypRef Expression
1 vex 3445 . . . . . . . . 9 𝑥 ∈ V
2 omex 9469 . . . . . . . . 9 ω ∈ V
31, 2unex 7634 . . . . . . . 8 (𝑥 ∪ ω) ∈ V
4 ssun2 4117 . . . . . . . 8 ω ⊆ (𝑥 ∪ ω)
5 ssdomg 8836 . . . . . . . 8 ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω)))
63, 4, 5mp2 9 . . . . . . 7 ω ≼ (𝑥 ∪ ω)
7 id 22 . . . . . . . 8 (GCH = V → GCH = V)
83, 7eleqtrrid 2845 . . . . . . 7 (GCH = V → (𝑥 ∪ ω) ∈ GCH)
93pwex 5316 . . . . . . . 8 𝒫 (𝑥 ∪ ω) ∈ V
109, 7eleqtrrid 2845 . . . . . . 7 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH)
11 gchacg 10506 . . . . . . 7 ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card)
126, 8, 10, 11mp3an2i 1465 . . . . . 6 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card)
133canth2 8970 . . . . . . 7 (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω)
14 sdomdom 8816 . . . . . . 7 ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω))
1513, 14ax-mp 5 . . . . . 6 (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)
16 numdom 9864 . . . . . 6 ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card)
1712, 15, 16sylancl 586 . . . . 5 (GCH = V → (𝑥 ∪ ω) ∈ dom card)
18 ssun1 4116 . . . . 5 𝑥 ⊆ (𝑥 ∪ ω)
19 ssnum 9865 . . . . 5 (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card)
2017, 18, 19sylancl 586 . . . 4 (GCH = V → 𝑥 ∈ dom card)
211a1i 11 . . . 4 (GCH = V → 𝑥 ∈ V)
2220, 212thd 264 . . 3 (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
2322eqrdv 2735 . 2 (GCH = V → dom card = V)
24 dfac10 9963 . 2 (CHOICE ↔ dom card = V)
2523, 24sylibr 233 1 (GCH = V → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cun 3894  wss 3896  𝒫 cpw 4543   class class class wbr 5085  dom cdm 5605  ωcom 7755  cdom 8777  csdm 8778  cardccrd 9761  CHOICEwac 9941  GCHcgch 10446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-seqom 8324  df-1o 8342  df-2o 8343  df-oadd 8346  df-omul 8347  df-oexp 8348  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-oi 9337  df-har 9384  df-wdom 9392  df-cnf 9488  df-dju 9727  df-card 9765  df-ac 9942  df-fin4 10113  df-gch 10447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator