![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version |
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchac | ⊢ (GCH = V → CHOICE) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
2 | omex 9644 | . . . . . . . . 9 ⊢ ω ∈ V | |
3 | 1, 2 | unex 7737 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
4 | ssun2 4173 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
5 | ssdomg 9002 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
8 | 3, 7 | eleqtrrid 2839 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
9 | 3 | pwex 5378 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
10 | 9, 7 | eleqtrrid 2839 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
11 | gchacg 10681 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
12 | 6, 8, 10, 11 | mp3an2i 1465 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
13 | 3 | canth2 9136 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
14 | sdomdom 8982 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
16 | numdom 10039 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
17 | 12, 15, 16 | sylancl 585 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
18 | ssun1 4172 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
19 | ssnum 10040 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
20 | 17, 18, 19 | sylancl 585 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
23 | 22 | eqrdv 2729 | . 2 ⊢ (GCH = V → dom card = V) |
24 | dfac10 10138 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
25 | 23, 24 | sylibr 233 | 1 ⊢ (GCH = V → CHOICE) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 dom cdm 5676 ωcom 7859 ≼ cdom 8943 ≺ csdm 8944 cardccrd 9936 CHOICEwac 10116 GCHcgch 10621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-seqom 8454 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-oexp 8478 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-har 9558 df-wdom 9566 df-cnf 9663 df-dju 9902 df-card 9940 df-ac 10117 df-fin4 10288 df-gch 10622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |