MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchac Structured version   Visualization version   GIF version

Theorem gchac 10634
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchac (GCH = V → CHOICE)

Proof of Theorem gchac
StepHypRef Expression
1 vex 3451 . . . . . . . . 9 𝑥 ∈ V
2 omex 9596 . . . . . . . . 9 ω ∈ V
31, 2unex 7720 . . . . . . . 8 (𝑥 ∪ ω) ∈ V
4 ssun2 4142 . . . . . . . 8 ω ⊆ (𝑥 ∪ ω)
5 ssdomg 8971 . . . . . . . 8 ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω)))
63, 4, 5mp2 9 . . . . . . 7 ω ≼ (𝑥 ∪ ω)
7 id 22 . . . . . . . 8 (GCH = V → GCH = V)
83, 7eleqtrrid 2835 . . . . . . 7 (GCH = V → (𝑥 ∪ ω) ∈ GCH)
93pwex 5335 . . . . . . . 8 𝒫 (𝑥 ∪ ω) ∈ V
109, 7eleqtrrid 2835 . . . . . . 7 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH)
11 gchacg 10633 . . . . . . 7 ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card)
126, 8, 10, 11mp3an2i 1468 . . . . . 6 (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card)
133canth2 9094 . . . . . . 7 (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω)
14 sdomdom 8951 . . . . . . 7 ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω))
1513, 14ax-mp 5 . . . . . 6 (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)
16 numdom 9991 . . . . . 6 ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card)
1712, 15, 16sylancl 586 . . . . 5 (GCH = V → (𝑥 ∪ ω) ∈ dom card)
18 ssun1 4141 . . . . 5 𝑥 ⊆ (𝑥 ∪ ω)
19 ssnum 9992 . . . . 5 (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card)
2017, 18, 19sylancl 586 . . . 4 (GCH = V → 𝑥 ∈ dom card)
211a1i 11 . . . 4 (GCH = V → 𝑥 ∈ V)
2220, 212thd 265 . . 3 (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
2322eqrdv 2727 . 2 (GCH = V → dom card = V)
24 dfac10 10091 . 2 (CHOICE ↔ dom card = V)
2523, 24sylibr 234 1 (GCH = V → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  wss 3914  𝒫 cpw 4563   class class class wbr 5107  dom cdm 5638  ωcom 7842  cdom 8916  csdm 8917  cardccrd 9888  CHOICEwac 10068  GCHcgch 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-har 9510  df-wdom 9518  df-cnf 9615  df-dju 9854  df-card 9892  df-ac 10069  df-fin4 10240  df-gch 10574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator