| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version | ||
| Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchac | ⊢ (GCH = V → CHOICE) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 2 | omex 9533 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 3 | 1, 2 | unex 7677 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
| 4 | ssun2 4126 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
| 5 | ssdomg 8922 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
| 6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
| 7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
| 8 | 3, 7 | eleqtrrid 2838 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
| 9 | 3 | pwex 5316 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
| 10 | 9, 7 | eleqtrrid 2838 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
| 11 | gchacg 10571 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
| 12 | 6, 8, 10, 11 | mp3an2i 1468 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
| 13 | 3 | canth2 9043 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
| 14 | sdomdom 8902 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
| 16 | numdom 9929 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
| 17 | 12, 15, 16 | sylancl 586 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
| 18 | ssun1 4125 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
| 19 | ssnum 9930 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
| 21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
| 22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 23 | 22 | eqrdv 2729 | . 2 ⊢ (GCH = V → dom card = V) |
| 24 | dfac10 10029 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 25 | 23, 24 | sylibr 234 | 1 ⊢ (GCH = V → CHOICE) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 dom cdm 5614 ωcom 7796 ≼ cdom 8867 ≺ csdm 8868 cardccrd 9828 CHOICEwac 10006 GCHcgch 10511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-oexp 8391 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-har 9443 df-wdom 9451 df-cnf 9552 df-dju 9794 df-card 9832 df-ac 10007 df-fin4 10178 df-gch 10512 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |