| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version | ||
| Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchac | ⊢ (GCH = V → CHOICE) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3484 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 2 | omex 9683 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 3 | 1, 2 | unex 7764 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
| 4 | ssun2 4179 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
| 5 | ssdomg 9040 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
| 6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
| 7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
| 8 | 3, 7 | eleqtrrid 2848 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
| 9 | 3 | pwex 5380 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
| 10 | 9, 7 | eleqtrrid 2848 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
| 11 | gchacg 10720 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
| 12 | 6, 8, 10, 11 | mp3an2i 1468 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
| 13 | 3 | canth2 9170 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
| 14 | sdomdom 9020 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
| 16 | numdom 10078 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
| 17 | 12, 15, 16 | sylancl 586 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
| 18 | ssun1 4178 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
| 19 | ssnum 10079 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
| 21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
| 22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 23 | 22 | eqrdv 2735 | . 2 ⊢ (GCH = V → dom card = V) |
| 24 | dfac10 10178 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 25 | 23, 24 | sylibr 234 | 1 ⊢ (GCH = V → CHOICE) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 dom cdm 5685 ωcom 7887 ≼ cdom 8983 ≺ csdm 8984 cardccrd 9975 CHOICEwac 10155 GCHcgch 10660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seqom 8488 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-oexp 8512 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-oi 9550 df-har 9597 df-wdom 9605 df-cnf 9702 df-dju 9941 df-card 9979 df-ac 10156 df-fin4 10327 df-gch 10661 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |