| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version | ||
| Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchac | ⊢ (GCH = V → CHOICE) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 2 | omex 9596 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 3 | 1, 2 | unex 7720 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
| 4 | ssun2 4142 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
| 5 | ssdomg 8971 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
| 6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
| 7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
| 8 | 3, 7 | eleqtrrid 2835 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
| 9 | 3 | pwex 5335 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
| 10 | 9, 7 | eleqtrrid 2835 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
| 11 | gchacg 10633 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
| 12 | 6, 8, 10, 11 | mp3an2i 1468 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
| 13 | 3 | canth2 9094 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
| 14 | sdomdom 8951 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
| 16 | numdom 9991 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
| 17 | 12, 15, 16 | sylancl 586 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
| 18 | ssun1 4141 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
| 19 | ssnum 9992 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
| 21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
| 22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 23 | 22 | eqrdv 2727 | . 2 ⊢ (GCH = V → dom card = V) |
| 24 | dfac10 10091 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 25 | 23, 24 | sylibr 234 | 1 ⊢ (GCH = V → CHOICE) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 dom cdm 5638 ωcom 7842 ≼ cdom 8916 ≺ csdm 8917 cardccrd 9888 CHOICEwac 10068 GCHcgch 10573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seqom 8416 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-oexp 8440 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-har 9510 df-wdom 9518 df-cnf 9615 df-dju 9854 df-card 9892 df-ac 10069 df-fin4 10240 df-gch 10574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |