![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchac | Structured version Visualization version GIF version |
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchac | ⊢ (GCH = V → CHOICE) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
2 | omex 9712 | . . . . . . . . 9 ⊢ ω ∈ V | |
3 | 1, 2 | unex 7779 | . . . . . . . 8 ⊢ (𝑥 ∪ ω) ∈ V |
4 | ssun2 4202 | . . . . . . . 8 ⊢ ω ⊆ (𝑥 ∪ ω) | |
5 | ssdomg 9060 | . . . . . . . 8 ⊢ ((𝑥 ∪ ω) ∈ V → (ω ⊆ (𝑥 ∪ ω) → ω ≼ (𝑥 ∪ ω))) | |
6 | 3, 4, 5 | mp2 9 | . . . . . . 7 ⊢ ω ≼ (𝑥 ∪ ω) |
7 | id 22 | . . . . . . . 8 ⊢ (GCH = V → GCH = V) | |
8 | 3, 7 | eleqtrrid 2851 | . . . . . . 7 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ GCH) |
9 | 3 | pwex 5398 | . . . . . . . 8 ⊢ 𝒫 (𝑥 ∪ ω) ∈ V |
10 | 9, 7 | eleqtrrid 2851 | . . . . . . 7 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ GCH) |
11 | gchacg 10749 | . . . . . . 7 ⊢ ((ω ≼ (𝑥 ∪ ω) ∧ (𝑥 ∪ ω) ∈ GCH ∧ 𝒫 (𝑥 ∪ ω) ∈ GCH) → 𝒫 (𝑥 ∪ ω) ∈ dom card) | |
12 | 6, 8, 10, 11 | mp3an2i 1466 | . . . . . 6 ⊢ (GCH = V → 𝒫 (𝑥 ∪ ω) ∈ dom card) |
13 | 3 | canth2 9196 | . . . . . . 7 ⊢ (𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) |
14 | sdomdom 9040 | . . . . . . 7 ⊢ ((𝑥 ∪ ω) ≺ 𝒫 (𝑥 ∪ ω) → (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω) |
16 | numdom 10107 | . . . . . 6 ⊢ ((𝒫 (𝑥 ∪ ω) ∈ dom card ∧ (𝑥 ∪ ω) ≼ 𝒫 (𝑥 ∪ ω)) → (𝑥 ∪ ω) ∈ dom card) | |
17 | 12, 15, 16 | sylancl 585 | . . . . 5 ⊢ (GCH = V → (𝑥 ∪ ω) ∈ dom card) |
18 | ssun1 4201 | . . . . 5 ⊢ 𝑥 ⊆ (𝑥 ∪ ω) | |
19 | ssnum 10108 | . . . . 5 ⊢ (((𝑥 ∪ ω) ∈ dom card ∧ 𝑥 ⊆ (𝑥 ∪ ω)) → 𝑥 ∈ dom card) | |
20 | 17, 18, 19 | sylancl 585 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ dom card) |
21 | 1 | a1i 11 | . . . 4 ⊢ (GCH = V → 𝑥 ∈ V) |
22 | 20, 21 | 2thd 265 | . . 3 ⊢ (GCH = V → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
23 | 22 | eqrdv 2738 | . 2 ⊢ (GCH = V → dom card = V) |
24 | dfac10 10207 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
25 | 23, 24 | sylibr 234 | 1 ⊢ (GCH = V → CHOICE) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 dom cdm 5700 ωcom 7903 ≼ cdom 9001 ≺ csdm 9002 cardccrd 10004 CHOICEwac 10184 GCHcgch 10689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-oexp 8528 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-har 9626 df-wdom 9634 df-cnf 9731 df-dju 9970 df-card 10008 df-ac 10185 df-fin4 10356 df-gch 10690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |