![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac2 | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 10531 is easier to understand.) Note: aceq0 10187 shows the logical equivalence to ax-ac 10528. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) |
Ref | Expression |
---|---|
ac2 | ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac 10528 | . 2 ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | |
2 | aceq0 10187 | . 2 ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-ac 10528 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-mo 2543 df-eu 2572 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: ac3 10531 |
Copyright terms: Public domain | W3C validator |