|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ac2 | Structured version Visualization version GIF version | ||
| Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 10503 is easier to understand.) Note: aceq0 10159 shows the logical equivalence to ax-ac 10500. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) | 
| Ref | Expression | 
|---|---|
| ac2 | ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-ac 10500 | . 2 ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | |
| 2 | aceq0 10159 | . 2 ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∀wral 3060 ∃wrex 3069 ∃!wreu 3377 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-ac 10500 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 | 
| This theorem is referenced by: ac3 10503 | 
| Copyright terms: Public domain | W3C validator |