MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weth Structured version   Visualization version   GIF version

Theorem weth 9520
Description: Well-ordering theorem: any set 𝐴 can be well-ordered. This is an equivalent of the Axiom of Choice. Theorem 6 of [Suppes] p. 242. First proved by Ernst Zermelo (the "Z" in ZFC) in 1904. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
weth (𝐴𝑉 → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem weth
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 weeq2 5239 . . 3 (𝑦 = 𝐴 → (𝑥 We 𝑦𝑥 We 𝐴))
21exbidv 2002 . 2 (𝑦 = 𝐴 → (∃𝑥 𝑥 We 𝑦 ↔ ∃𝑥 𝑥 We 𝐴))
3 dfac8 9160 . . 3 (CHOICE ↔ ∀𝑦𝑥 𝑥 We 𝑦)
43axaci 9493 . 2 𝑥 𝑥 We 𝑦
52, 4vtoclg 3418 1 (𝐴𝑉 → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wex 1852  wcel 2145   We wwe 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-ac2 9488
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-wrecs 7560  df-recs 7622  df-en 8111  df-card 8966  df-ac 9140
This theorem is referenced by:  vitali2  41429
  Copyright terms: Public domain W3C validator