Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weth | Structured version Visualization version GIF version |
Description: Well-ordering theorem: any set 𝐴 can be well-ordered. This is an equivalent of the Axiom of Choice. Theorem 6 of [Suppes] p. 242. First proved by Ernst Zermelo (the "Z" in ZFC) in 1904. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
weth | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weeq2 5603 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥 We 𝑦 ↔ 𝑥 We 𝐴)) | |
2 | 1 | exbidv 1923 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑥 We 𝑦 ↔ ∃𝑥 𝑥 We 𝐴)) |
3 | dfac8 9984 | . . 3 ⊢ (CHOICE ↔ ∀𝑦∃𝑥 𝑥 We 𝑦) | |
4 | 3 | axaci 10317 | . 2 ⊢ ∃𝑥 𝑥 We 𝑦 |
5 | 2, 4 | vtoclg 3514 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃wex 1780 ∈ wcel 2105 We wwe 5568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-ac2 10312 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-en 8797 df-card 9788 df-ac 9965 |
This theorem is referenced by: vitali2 44558 |
Copyright terms: Public domain | W3C validator |