Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12fromc15 Structured version   Visualization version   GIF version

Theorem ax12fromc15 38432
Description: Rederivation of Axiom ax-12 2166 from ax-c15 38416, ax-c11 38414 (used through dral1-o 38431), and other older axioms. See Theorem axc15 2415 for the derivation of ax-c15 38416 from ax-12 2166.

An open problem is whether we can prove this using ax-c11n 38415 instead of ax-c11 38414.

This proof uses newer axioms ax-4 1803 and ax-6 1963, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-c4 38411 and ax-c10 38413. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax12fromc15 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem ax12fromc15
StepHypRef Expression
1 biidd 261 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜑))
21dral1-o 38431 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜑))
3 ax-1 6 . . . . 5 (𝜑 → (𝑥 = 𝑦𝜑))
43alimi 1805 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
52, 4syl6bir 253 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
65a1d 25 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
7 ax-c5 38410 . . 3 (∀𝑦𝜑𝜑)
8 ax-c15 38416 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
97, 8syl7 74 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
106, 9pm2.61i 182 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-11 2146  ax-c5 38410  ax-c4 38411  ax-c7 38412  ax-c10 38413  ax-c11 38414  ax-c15 38416  ax-c9 38417
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator