Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12fromc15 Structured version   Visualization version   GIF version

Theorem ax12fromc15 36919
Description: Rederivation of Axiom ax-12 2171 from ax-c15 36903, ax-c11 36901 (used through dral1-o 36918), and other older axioms. See Theorem axc15 2422 for the derivation of ax-c15 36903 from ax-12 2171.

An open problem is whether we can prove this using ax-c11n 36902 instead of ax-c11 36901.

This proof uses newer axioms ax-4 1812 and ax-6 1971, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-c4 36898 and ax-c10 36900. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax12fromc15 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem ax12fromc15
StepHypRef Expression
1 biidd 261 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜑))
21dral1-o 36918 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜑))
3 ax-1 6 . . . . 5 (𝜑 → (𝑥 = 𝑦𝜑))
43alimi 1814 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
52, 4syl6bir 253 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
65a1d 25 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
7 ax-c5 36897 . . 3 (∀𝑦𝜑𝜑)
8 ax-c15 36903 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
97, 8syl7 74 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
106, 9pm2.61i 182 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-c5 36897  ax-c4 36898  ax-c7 36899  ax-c10 36900  ax-c11 36901  ax-c15 36903  ax-c9 36904
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator