Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12inda2 Structured version   Visualization version   GIF version

Theorem ax12inda2 36961
Description: Induction step for constructing a substitution instance of ax-c15 36903 without using ax-c15 36903. Quantification case. When 𝑧 and 𝑦 are distinct, this theorem avoids the dummy variables needed by the more general ax12inda 36962. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12inda2.1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Assertion
Ref Expression
ax12inda2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem ax12inda2
StepHypRef Expression
1 ax-1 6 . . . . 5 (∀𝑧𝜑 → (𝑥 = 𝑦 → ∀𝑧𝜑))
2 axc16g-o 36948 . . . . 5 (∀𝑦 𝑦 = 𝑧 → ((𝑥 = 𝑦 → ∀𝑧𝜑) → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))
31, 2syl5 34 . . . 4 (∀𝑦 𝑦 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))
43a1d 25 . . 3 (∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
54a1d 25 . 2 (∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
6 ax12inda2.1 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
76ax12indalem 36959 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
85, 7pm2.61i 182 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-c5 36897  ax-c4 36898  ax-c7 36899  ax-c10 36900  ax-c11 36901  ax-c9 36904  ax-c16 36906
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by:  ax12inda  36962
  Copyright terms: Public domain W3C validator