| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12inda2 | Structured version Visualization version GIF version | ||
| Description: Induction step for constructing a substitution instance of ax-c15 38912 without using ax-c15 38912. Quantification case. When 𝑧 and 𝑦 are distinct, this theorem avoids the dummy variables needed by the more general ax12inda 38971. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax12inda2.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| Ref | Expression |
|---|---|
| ax12inda2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . . . 5 ⊢ (∀𝑧𝜑 → (𝑥 = 𝑦 → ∀𝑧𝜑)) | |
| 2 | axc16g-o 38957 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑧 → ((𝑥 = 𝑦 → ∀𝑧𝜑) → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) | |
| 3 | 1, 2 | syl5 34 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 4 | 3 | a1d 25 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |
| 5 | 4 | a1d 25 | . 2 ⊢ (∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 6 | ax12inda2.1 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
| 7 | 6 | ax12indalem 38968 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 8 | 5, 7 | pm2.61i 182 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-c5 38906 ax-c4 38907 ax-c7 38908 ax-c10 38909 ax-c11 38910 ax-c9 38913 ax-c16 38915 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: ax12inda 38971 |
| Copyright terms: Public domain | W3C validator |