Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc16g-o Structured version   Visualization version   GIF version

Theorem axc16g-o 36948
Description: A generalization of Axiom ax-c16 36906. Version of axc16g 2252 using ax-c11 36901. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16g-o (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16g-o
StepHypRef Expression
1 aev-o 36945 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
2 ax-c16 36906 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
3 biidd 261 . . . 4 (∀𝑧 𝑧 = 𝑥 → (𝜑𝜑))
43dral1-o 36918 . . 3 (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑))
54biimprd 247 . 2 (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑))
61, 2, 5sylsyld 61 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-c5 36897  ax-c4 36898  ax-c7 36899  ax-c10 36900  ax-c11 36901  ax-c9 36904  ax-c16 36906
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  ax12inda2  36961
  Copyright terms: Public domain W3C validator