![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc16g-o | Structured version Visualization version GIF version |
Description: A generalization of Axiom ax-c16 38874. Version of axc16g 2258 using ax-c11 38869. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc16g-o | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev-o 38913 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥) | |
2 | ax-c16 38874 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | |
3 | biidd 262 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (𝜑 ↔ 𝜑)) | |
4 | 3 | dral1-o 38886 | . . 3 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑)) |
5 | 4 | biimprd 248 | . 2 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑)) |
6 | 1, 2, 5 | sylsyld 61 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-11 2155 ax-c5 38865 ax-c4 38866 ax-c7 38867 ax-c10 38868 ax-c11 38869 ax-c9 38872 ax-c16 38874 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: ax12inda2 38929 |
Copyright terms: Public domain | W3C validator |