MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpgbi Structured version   Visualization version   GIF version

Theorem mpgbi 1899
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbi.1 (∀𝑥𝜑𝜓)
mpgbi.2 𝜑
Assertion
Ref Expression
mpgbi 𝜓

Proof of Theorem mpgbi
StepHypRef Expression
1 mpgbi.2 . . 3 𝜑
21ax-gen 1896 . 2 𝑥𝜑
3 mpgbi.1 . 2 (∀𝑥𝜑𝜓)
42, 3mpbi 222 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wb 198  wal 1656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  nex  1901  exlimi  2262  axi12  2802  abbii  2945  nalset  5021  bnj1304  31437  bnj1052  31590  bnj1030  31602  bj-abbii  33303  bj-nalset  33320  bj-nuliota  33542  spr0nelg  42574
  Copyright terms: Public domain W3C validator