MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep6OLD Structured version   Visualization version   GIF version

Theorem axrep6OLD 5269
Description: Obsolete version of axrep6 5268 as of 18-Sep-2025. (Contributed by SN, 18-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axrep6OLD (∀𝑤∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)

Proof of Theorem axrep6OLD
StepHypRef Expression
1 ax-rep 5259 . 2 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2 df-mo 2538 . . . 4 (∃*𝑧𝜑 ↔ ∃𝑦𝑧(𝜑𝑧 = 𝑦))
3 19.3v 1980 . . . . . . 7 (∀𝑦𝜑𝜑)
43imbi1i 349 . . . . . 6 ((∀𝑦𝜑𝑧 = 𝑦) ↔ (𝜑𝑧 = 𝑦))
54albii 1818 . . . . 5 (∀𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ ∀𝑧(𝜑𝑧 = 𝑦))
65exbii 1847 . . . 4 (∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝜑𝑧 = 𝑦))
72, 6bitr4i 278 . . 3 (∃*𝑧𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
87albii 1818 . 2 (∀𝑤∃*𝑧𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
93rexbii 3082 . . . . . 6 (∃𝑤𝑥𝑦𝜑 ↔ ∃𝑤𝑥 𝜑)
10 df-rex 3060 . . . . . 6 (∃𝑤𝑥𝑦𝜑 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
119, 10bitr3i 277 . . . . 5 (∃𝑤𝑥 𝜑 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
1211bibi2i 337 . . . 4 ((𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
1312albii 1818 . . 3 (∀𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
1413exbii 1847 . 2 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
151, 8, 143imtr4i 292 1 (∀𝑤∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  wex 1778  ∃*wmo 2536  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-rep 5259
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2538  df-rex 3060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator