Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axrep6g | Structured version Visualization version GIF version |
Description: axrep6 5216 in class notation. It is equivalent to both ax-rep 5209 and abrexexg 7803, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
axrep6g | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3343 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | 1 | abbidv 2807 | . . . . 5 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓}) |
3 | 2 | eleq1d 2823 | . . . 4 ⊢ (𝑧 = 𝐴 → ({𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V)) |
4 | 3 | imbi2d 341 | . . 3 ⊢ (𝑧 = 𝐴 → ((∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) ↔ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V))) |
5 | axrep6 5216 | . . . 4 ⊢ (∀𝑥∃*𝑦𝜓 → ∃𝑤∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓)) | |
6 | abbi1 2806 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ 𝑦 ∈ 𝑤} = {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓}) | |
7 | abid2 2882 | . . . . . . 7 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑤} = 𝑤 | |
8 | vex 3436 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
9 | 7, 8 | eqeltri 2835 | . . . . . 6 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑤} ∈ V |
10 | 6, 9 | eqeltrrdi 2848 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
11 | 10 | exlimiv 1933 | . . . 4 ⊢ (∃𝑤∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
12 | 5, 11 | syl 17 | . . 3 ⊢ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
13 | 4, 12 | vtoclg 3505 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V)) |
14 | 13 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃*wmo 2538 {cab 2715 ∃wrex 3065 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-rep 5209 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 |
This theorem is referenced by: abrexexg 7803 |
Copyright terms: Public domain | W3C validator |