MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep6g Structured version   Visualization version   GIF version

Theorem axrep6g 5292
Description: axrep6 5291 in class notation. It is equivalent to both ax-rep 5284 and abrexexg 7943, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.)
Assertion
Ref Expression
axrep6g ((𝐴𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem axrep6g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3321 . . . . . 6 (𝑧 = 𝐴 → (∃𝑥𝑧 𝜓 ↔ ∃𝑥𝐴 𝜓))
21abbidv 2801 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥𝑧 𝜓} = {𝑦 ∣ ∃𝑥𝐴 𝜓})
32eleq1d 2818 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V ↔ {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V))
43imbi2d 340 . . 3 (𝑧 = 𝐴 → ((∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V) ↔ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)))
5 axrep6 5291 . . . 4 (∀𝑥∃*𝑦𝜓 → ∃𝑤𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓))
6 abbi 2800 . . . . . 6 (∀𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦𝑦𝑤} = {𝑦 ∣ ∃𝑥𝑧 𝜓})
7 abid2 2871 . . . . . . 7 {𝑦𝑦𝑤} = 𝑤
8 vex 3478 . . . . . . 7 𝑤 ∈ V
97, 8eqeltri 2829 . . . . . 6 {𝑦𝑦𝑤} ∈ V
106, 9eqeltrrdi 2842 . . . . 5 (∀𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
1110exlimiv 1933 . . . 4 (∃𝑤𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
125, 11syl 17 . . 3 (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
134, 12vtoclg 3556 . 2 (𝐴𝑉 → (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V))
1413imp 407 1 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2532  {cab 2709  wrex 3070  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-rep 5284
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-v 3476
This theorem is referenced by:  funimaexg  6631  abrexexg  7943
  Copyright terms: Public domain W3C validator