MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep6g Structured version   Visualization version   GIF version

Theorem axrep6g 5217
Description: axrep6 5216 in class notation. It is equivalent to both ax-rep 5209 and abrexexg 7803, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.)
Assertion
Ref Expression
axrep6g ((𝐴𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem axrep6g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3343 . . . . . 6 (𝑧 = 𝐴 → (∃𝑥𝑧 𝜓 ↔ ∃𝑥𝐴 𝜓))
21abbidv 2807 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥𝑧 𝜓} = {𝑦 ∣ ∃𝑥𝐴 𝜓})
32eleq1d 2823 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V ↔ {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V))
43imbi2d 341 . . 3 (𝑧 = 𝐴 → ((∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V) ↔ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)))
5 axrep6 5216 . . . 4 (∀𝑥∃*𝑦𝜓 → ∃𝑤𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓))
6 abbi1 2806 . . . . . 6 (∀𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦𝑦𝑤} = {𝑦 ∣ ∃𝑥𝑧 𝜓})
7 abid2 2882 . . . . . . 7 {𝑦𝑦𝑤} = 𝑤
8 vex 3436 . . . . . . 7 𝑤 ∈ V
97, 8eqeltri 2835 . . . . . 6 {𝑦𝑦𝑤} ∈ V
106, 9eqeltrrdi 2848 . . . . 5 (∀𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
1110exlimiv 1933 . . . 4 (∃𝑤𝑦(𝑦𝑤 ↔ ∃𝑥𝑧 𝜓) → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
125, 11syl 17 . . 3 (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝑧 𝜓} ∈ V)
134, 12vtoclg 3505 . 2 (𝐴𝑉 → (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V))
1413imp 407 1 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥𝐴 𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  {cab 2715  wrex 3065  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-rep 5209
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434
This theorem is referenced by:  abrexexg  7803
  Copyright terms: Public domain W3C validator