| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrep6g | Structured version Visualization version GIF version | ||
| Description: axrep6 5246 in class notation. It is equivalent to both ax-rep 5237 and abrexexg 7942, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| axrep6g | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3297 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | 1 | abbidv 2796 | . . . . 5 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓}) |
| 3 | 2 | eleq1d 2814 | . . . 4 ⊢ (𝑧 = 𝐴 → ({𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V)) |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐴 → ((∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) ↔ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V))) |
| 5 | axrep6 5246 | . . . 4 ⊢ (∀𝑥∃*𝑦𝜓 → ∃𝑤∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓)) | |
| 6 | abbi 2795 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ 𝑦 ∈ 𝑤} = {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓}) | |
| 7 | abid2 2866 | . . . . . . 7 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑤} = 𝑤 | |
| 8 | vex 3454 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 9 | 7, 8 | eqeltri 2825 | . . . . . 6 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑤} ∈ V |
| 10 | 6, 9 | eqeltrrdi 2838 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
| 11 | 10 | exlimiv 1930 | . . . 4 ⊢ (∃𝑤∀𝑦(𝑦 ∈ 𝑤 ↔ ∃𝑥 ∈ 𝑧 𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝑧 𝜓} ∈ V) |
| 13 | 4, 12 | vtoclg 3523 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥∃*𝑦𝜓 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V)) |
| 14 | 13 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 {cab 2708 ∃wrex 3054 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-rep 5237 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 |
| This theorem is referenced by: funimaexg 6606 abrexexg 7942 permaxrep 45003 |
| Copyright terms: Public domain | W3C validator |