| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrep6 | Structured version Visualization version GIF version | ||
| Description: A condensed form of ax-rep 5279. (Contributed by SN, 18-Sep-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| Ref | Expression |
|---|---|
| axrep6 | ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep4v 5284 | . 2 ⊢ (∀𝑤∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) | |
| 2 | df-mo 2540 | . . 3 ⊢ (∃*𝑧𝜑 ↔ ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦)) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑤∃*𝑧𝜑 ↔ ∀𝑤∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦)) |
| 4 | df-rex 3071 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑥 𝜑 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑)) | |
| 5 | 4 | bibi2i 337 | . . . 4 ⊢ ((𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ (𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
| 7 | 6 | exbii 1848 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
| 8 | 1, 3, 7 | 3imtr4i 292 | 1 ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-rep 5279 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-rex 3071 |
| This theorem is referenced by: axrep6g 5290 axsepgfromrep 5294 sn-axrep5v 42255 sn-axprlem3 42256 |
| Copyright terms: Public domain | W3C validator |