![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axrep6 | Structured version Visualization version GIF version |
Description: A condensed form of ax-rep 5285. (Contributed by SN, 18-Sep-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
Ref | Expression |
---|---|
axrep6 | ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axrep4v 5290 | . 2 ⊢ (∀𝑤∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) | |
2 | df-mo 2538 | . . 3 ⊢ (∃*𝑧𝜑 ↔ ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦)) | |
3 | 2 | albii 1816 | . 2 ⊢ (∀𝑤∃*𝑧𝜑 ↔ ∀𝑤∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦)) |
4 | df-rex 3069 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑥 𝜑 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑)) | |
5 | 4 | bibi2i 337 | . . . 4 ⊢ ((𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ (𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
6 | 5 | albii 1816 | . . 3 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
7 | 6 | exbii 1845 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ 𝜑))) |
8 | 1, 3, 7 | 3imtr4i 292 | 1 ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1776 ∃*wmo 2536 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-rep 5285 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-rex 3069 |
This theorem is referenced by: axrep6g 5296 axsepgfromrep 5300 sn-axrep5v 42234 sn-axprlem3 42235 |
Copyright terms: Public domain | W3C validator |