MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep6 Structured version   Visualization version   GIF version

Theorem axrep6 5226
Description: A condensed form of ax-rep 5217. (Contributed by SN, 18-Sep-2023.) (Proof shortened by Matthew House, 18-Sep-2025.)
Assertion
Ref Expression
axrep6 (∀𝑤∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)

Proof of Theorem axrep6
StepHypRef Expression
1 axrep4v 5222 . 2 (∀𝑤𝑦𝑧(𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥𝜑)))
2 df-mo 2535 . . 3 (∃*𝑧𝜑 ↔ ∃𝑦𝑧(𝜑𝑧 = 𝑦))
32albii 1820 . 2 (∀𝑤∃*𝑧𝜑 ↔ ∀𝑤𝑦𝑧(𝜑𝑧 = 𝑦))
4 df-rex 3057 . . . . 5 (∃𝑤𝑥 𝜑 ↔ ∃𝑤(𝑤𝑥𝜑))
54bibi2i 337 . . . 4 ((𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥𝜑)))
65albii 1820 . . 3 (∀𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥𝜑)))
76exbii 1849 . 2 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥𝜑)))
81, 3, 73imtr4i 292 1 (∀𝑤∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  ∃*wmo 2533  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-rep 5217
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-rex 3057
This theorem is referenced by:  axrep6g  5228  axsepgfromrep  5232  sn-axrep5v  42248  sn-axprlem3  42249
  Copyright terms: Public domain W3C validator