![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bibiad | Structured version Visualization version GIF version |
Description: Eliminate an hypothesis 𝜃 in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
bibiad.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
bibiad.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
bibiad.3 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibiad | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | bibiad.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | bibiad.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | |
5 | 4 | biimpa 476 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
6 | 1, 2, 3, 5 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜑) | |
8 | bibiad.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜒) | |
10 | 4 | biimpar 477 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜒) → 𝜓) |
11 | 7, 8, 9, 10 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
12 | 6, 11 | impbida 800 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: brab2d 32629 ellpi 33366 |
Copyright terms: Public domain | W3C validator |