| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibiad | Structured version Visualization version GIF version | ||
| Description: Eliminate an hypothesis 𝜃 in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| bibiad.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| bibiad.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| bibiad.3 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibiad | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | bibiad.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | bibiad.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | biimpa 476 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
| 6 | 1, 2, 3, 5 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 7 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜑) | |
| 8 | bibiad.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜒) | |
| 10 | 4 | biimpar 477 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜒) → 𝜓) |
| 11 | 7, 8, 9, 10 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 12 | 6, 11 | impbida 800 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: brab2d 32566 elrgspn 33196 ellpi 33342 brab2dd 48687 |
| Copyright terms: Public domain | W3C validator |