Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bibiad Structured version   Visualization version   GIF version

Theorem bibiad 32486
Description: Eliminate an hypothesis 𝜃 in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
bibiad.1 ((𝜑𝜓) → 𝜃)
bibiad.2 ((𝜑𝜒) → 𝜃)
bibiad.3 ((𝜑𝜃) → (𝜓𝜒))
Assertion
Ref Expression
bibiad (𝜑 → (𝜓𝜒))

Proof of Theorem bibiad
StepHypRef Expression
1 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
2 bibiad.1 . . 3 ((𝜑𝜓) → 𝜃)
3 simpr 484 . . 3 ((𝜑𝜓) → 𝜓)
4 bibiad.3 . . . 4 ((𝜑𝜃) → (𝜓𝜒))
54biimpa 476 . . 3 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
61, 2, 3, 5syl21anc 837 . 2 ((𝜑𝜓) → 𝜒)
7 simpl 482 . . 3 ((𝜑𝜒) → 𝜑)
8 bibiad.2 . . 3 ((𝜑𝜒) → 𝜃)
9 simpr 484 . . 3 ((𝜑𝜒) → 𝜒)
104biimpar 477 . . 3 (((𝜑𝜃) ∧ 𝜒) → 𝜓)
117, 8, 9, 10syl21anc 837 . 2 ((𝜑𝜒) → 𝜓)
126, 11impbida 800 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  brab2d  32629  ellpi  33366
  Copyright terms: Public domain W3C validator