Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdran Structured version   Visualization version   GIF version

Theorem lmdran 49653
Description: To each limit of a diagram there is a corresponding right Kan extention of the diagram along a functor to a terminal category. The morphism parts coincide, while the object parts are one-to-one correspondent (diag1f1o 49516). (Contributed by Zhi Wang, 26-Nov-2025.)
Hypotheses
Ref Expression
lmdran.1 (𝜑1 ∈ TermCat)
lmdran.g (𝜑𝐺 ∈ (𝐷 Func 1 ))
lmdran.l 𝐿 = (𝐶Δfunc 1 )
lmdran.y (𝜑𝑌 = ((1st𝐿)‘𝑋))
Assertion
Ref Expression
lmdran (𝜑 → (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))

Proof of Theorem lmdran
StepHypRef Expression
1 lmdfval2 49637 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
21breqi 5108 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
3 simpr 484 . . . . . . 7 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
43up1st2nd 49167 . . . . . 6 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
5 eqid 2729 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
6 eqid 2729 . . . . . . 7 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
76fucbas 17905 . . . . . 6 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
84, 5, 7oppcuprcl3 49182 . . . . 5 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶))
9 eqid 2729 . . . . . 6 (oppCat‘𝐶) = (oppCat‘𝐶)
10 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
114, 9, 10oppcuprcl4 49181 . . . . 5 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶))
128, 11jca 511 . . . 4 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶)))
13 simpr 484 . . . . . . 7 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
1413up1st2nd 49167 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌(⟨(1st ‘( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))), (2nd ‘( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)))⟩((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
1514, 5, 7oppcuprcl3 49182 . . . . 5 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶))
16 lmdran.y . . . . . . . . 9 (𝜑𝑌 = ((1st𝐿)‘𝑋))
1716adantr 480 . . . . . . . 8 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 = ((1st𝐿)‘𝑋))
18 eqid 2729 . . . . . . . . . 10 (oppCat‘( 1 FuncCat 𝐶)) = (oppCat‘( 1 FuncCat 𝐶))
19 eqid 2729 . . . . . . . . . . 11 ( 1 FuncCat 𝐶) = ( 1 FuncCat 𝐶)
2019fucbas 17905 . . . . . . . . . 10 ( 1 Func 𝐶) = (Base‘( 1 FuncCat 𝐶))
2114, 18, 20oppcuprcl4 49181 . . . . . . . . 9 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 ∈ ( 1 Func 𝐶))
22 relfunc 17804 . . . . . . . . 9 Rel ( 1 Func 𝐶)
2321, 22oppfrcllem 49109 . . . . . . . 8 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 ≠ ∅)
2417, 23eqnetrrd 2993 . . . . . . 7 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → ((1st𝐿)‘𝑋) ≠ ∅)
25 fvfundmfvn0 6883 . . . . . . . 8 (((1st𝐿)‘𝑋) ≠ ∅ → (𝑋 ∈ dom (1st𝐿) ∧ Fun ((1st𝐿) ↾ {𝑋})))
2625simpld 494 . . . . . . 7 (((1st𝐿)‘𝑋) ≠ ∅ → 𝑋 ∈ dom (1st𝐿))
2724, 26syl 17 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ dom (1st𝐿))
28 lmdran.1 . . . . . . . . . . 11 (𝜑1 ∈ TermCat)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 1 ∈ TermCat)
30 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
3130func1st2nd 49058 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
3231funcrcl3 49062 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
33 lmdran.l . . . . . . . . . 10 𝐿 = (𝐶Δfunc 1 )
3410, 29, 32, 33diag1f1o 49516 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
35 f1of 6782 . . . . . . . . 9 ((1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) → (1st𝐿):(Base‘𝐶)⟶( 1 Func 𝐶))
3634, 35syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐿):(Base‘𝐶)⟶( 1 Func 𝐶))
3736fdmd 6680 . . . . . . 7 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → dom (1st𝐿) = (Base‘𝐶))
3815, 37syldan 591 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → dom (1st𝐿) = (Base‘𝐶))
3927, 38eleqtrd 2830 . . . . 5 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶))
4015, 39jca 511 . . . 4 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶)))
419, 10oppcbas 17659 . . . . 5 (Base‘𝐶) = (Base‘(oppCat‘𝐶))
4218, 20oppcbas 17659 . . . . 5 ( 1 Func 𝐶) = (Base‘(oppCat‘( 1 FuncCat 𝐶)))
4316adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑌 = ((1st𝐿)‘𝑋))
4432adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
4528adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 1 ∈ TermCat)
4645termccd 49461 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 1 ∈ Cat)
4733, 44, 46, 19diagcl 18182 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐿 ∈ (𝐶 Func ( 1 FuncCat 𝐶)))
4847oppf1 49121 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
4948fveq1d 6842 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((1st ‘( oppFunc ‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
5043, 49eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑌 = ((1st ‘( oppFunc ‘𝐿))‘𝑋))
51 eqid 2729 . . . . . . 7 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
52 lmdran.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐷 Func 1 ))
5352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 1 ))
54 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (⟨ 1 , 𝐶⟩ −∘F 𝐺) = (⟨ 1 , 𝐶⟩ −∘F 𝐺))
5533, 51, 53, 44, 54prcofdiag 49376 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((⟨ 1 , 𝐶⟩ −∘F 𝐺) ∘func 𝐿) = (𝐶Δfunc𝐷))
5619, 44, 6, 53prcoffunca 49368 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (⟨ 1 , 𝐶⟩ −∘F 𝐺) ∈ (( 1 FuncCat 𝐶) Func (𝐷 FuncCat 𝐶)))
5755, 47, 56cofuoppf 49132 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)) ∘func ( oppFunc ‘𝐿)) = ( oppFunc ‘(𝐶Δfunc𝐷)))
58 simprr 772 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶))
5918, 5, 56oppfoppc2 49124 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)) ∈ ((oppCat‘( 1 FuncCat 𝐶)) Func (oppCat‘(𝐷 FuncCat 𝐶))))
6044, 45, 19, 33diagffth 49520 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐿 ∈ ((𝐶 Full ( 1 FuncCat 𝐶)) ∩ (𝐶 Faith ( 1 FuncCat 𝐶))))
619, 18, 60ffthoppf 49147 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ( oppFunc ‘𝐿) ∈ (((oppCat‘𝐶) Full (oppCat‘( 1 FuncCat 𝐶))) ∩ ((oppCat‘𝐶) Faith (oppCat‘( 1 FuncCat 𝐶)))))
6234adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
6348f1oeq1d 6777 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) ↔ (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶)))
6462, 63mpbird 257 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
65 f1ofo 6789 . . . . . 6 ((1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–onto→( 1 Func 𝐶))
6664, 65syl 17 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–onto→( 1 Func 𝐶))
6741, 42, 50, 57, 58, 59, 61, 66uptr2a 49204 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
6812, 40, 67bibiad 839 . . 3 (𝜑 → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
69 eqid 2729 . . . . . 6 (⟨ 1 , 𝐶⟩ −∘F 𝐺) = (⟨ 1 , 𝐶⟩ −∘F 𝐺)
7018, 5, 69ranval3 49613 . . . . 5 (𝐺 ∈ (𝐷 Func 1 ) → (𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹) = (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
7152, 70syl 17 . . . 4 (𝜑 → (𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹) = (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
7271breqd 5113 . . 3 (𝜑 → (𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
7368, 72bitr4d 282 . 2 (𝜑 → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))
742, 73bitrid 283 1 (𝜑 → (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  dom cdm 5631  cres 5633  Fun wfun 6493  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Catccat 17605  oppCatcoppc 17652   Func cfunc 17796   FuncCat cfuc 17887  Δfunccdiag 18153   oppFunc coppf 49104   UP cup 49155   −∘F cprcof 49355  TermCatctermc 49454   Ran cran 49588   Limit clmd 49625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-oppc 17653  df-func 17800  df-cofu 17802  df-full 17848  df-fth 17849  df-nat 17888  df-fuc 17889  df-xpc 18113  df-1stf 18114  df-curf 18155  df-diag 18157  df-oppf 49105  df-up 49156  df-swapf 49242  df-fuco 49299  df-prcof 49356  df-thinc 49400  df-termc 49455  df-ran 49590  df-lmd 49627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator