Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdran Structured version   Visualization version   GIF version

Theorem lmdran 49660
Description: To each limit of a diagram there is a corresponding right Kan extention of the diagram along a functor to a terminal category. The morphism parts coincide, while the object parts are one-to-one correspondent (diag1f1o 49523). (Contributed by Zhi Wang, 26-Nov-2025.)
Hypotheses
Ref Expression
lmdran.1 (𝜑1 ∈ TermCat)
lmdran.g (𝜑𝐺 ∈ (𝐷 Func 1 ))
lmdran.l 𝐿 = (𝐶Δfunc 1 )
lmdran.y (𝜑𝑌 = ((1st𝐿)‘𝑋))
Assertion
Ref Expression
lmdran (𝜑 → (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))

Proof of Theorem lmdran
StepHypRef Expression
1 lmdfval2 49644 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
21breqi 5098 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
3 simpr 484 . . . . . . 7 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
43up1st2nd 49174 . . . . . 6 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
5 eqid 2729 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
6 eqid 2729 . . . . . . 7 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
76fucbas 17870 . . . . . 6 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
84, 5, 7oppcuprcl3 49189 . . . . 5 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶))
9 eqid 2729 . . . . . 6 (oppCat‘𝐶) = (oppCat‘𝐶)
10 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
114, 9, 10oppcuprcl4 49188 . . . . 5 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶))
128, 11jca 511 . . . 4 ((𝜑𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶)))
13 simpr 484 . . . . . . 7 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
1413up1st2nd 49174 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌(⟨(1st ‘( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))), (2nd ‘( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)))⟩((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀)
1514, 5, 7oppcuprcl3 49189 . . . . 5 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶))
16 lmdran.y . . . . . . . . 9 (𝜑𝑌 = ((1st𝐿)‘𝑋))
1716adantr 480 . . . . . . . 8 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 = ((1st𝐿)‘𝑋))
18 eqid 2729 . . . . . . . . . 10 (oppCat‘( 1 FuncCat 𝐶)) = (oppCat‘( 1 FuncCat 𝐶))
19 eqid 2729 . . . . . . . . . . 11 ( 1 FuncCat 𝐶) = ( 1 FuncCat 𝐶)
2019fucbas 17870 . . . . . . . . . 10 ( 1 Func 𝐶) = (Base‘( 1 FuncCat 𝐶))
2114, 18, 20oppcuprcl4 49188 . . . . . . . . 9 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 ∈ ( 1 Func 𝐶))
22 relfunc 17769 . . . . . . . . 9 Rel ( 1 Func 𝐶)
2321, 22oppfrcllem 49116 . . . . . . . 8 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑌 ≠ ∅)
2417, 23eqnetrrd 2993 . . . . . . 7 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → ((1st𝐿)‘𝑋) ≠ ∅)
25 fvfundmfvn0 6863 . . . . . . . 8 (((1st𝐿)‘𝑋) ≠ ∅ → (𝑋 ∈ dom (1st𝐿) ∧ Fun ((1st𝐿) ↾ {𝑋})))
2625simpld 494 . . . . . . 7 (((1st𝐿)‘𝑋) ≠ ∅ → 𝑋 ∈ dom (1st𝐿))
2724, 26syl 17 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ dom (1st𝐿))
28 lmdran.1 . . . . . . . . . . 11 (𝜑1 ∈ TermCat)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 1 ∈ TermCat)
30 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
3130func1st2nd 49065 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
3231funcrcl3 49069 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
33 lmdran.l . . . . . . . . . 10 𝐿 = (𝐶Δfunc 1 )
3410, 29, 32, 33diag1f1o 49523 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
35 f1of 6764 . . . . . . . . 9 ((1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) → (1st𝐿):(Base‘𝐶)⟶( 1 Func 𝐶))
3634, 35syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐿):(Base‘𝐶)⟶( 1 Func 𝐶))
3736fdmd 6662 . . . . . . 7 ((𝜑𝐹 ∈ (𝐷 Func 𝐶)) → dom (1st𝐿) = (Base‘𝐶))
3815, 37syldan 591 . . . . . 6 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → dom (1st𝐿) = (Base‘𝐶))
3927, 38eleqtrd 2830 . . . . 5 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶))
4015, 39jca 511 . . . 4 ((𝜑𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶)))
419, 10oppcbas 17624 . . . . 5 (Base‘𝐶) = (Base‘(oppCat‘𝐶))
4218, 20oppcbas 17624 . . . . 5 ( 1 Func 𝐶) = (Base‘(oppCat‘( 1 FuncCat 𝐶)))
4316adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑌 = ((1st𝐿)‘𝑋))
4432adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
4528adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 1 ∈ TermCat)
4645termccd 49468 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 1 ∈ Cat)
4733, 44, 46, 19diagcl 18147 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐿 ∈ (𝐶 Func ( 1 FuncCat 𝐶)))
4847oppf1 49128 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
4948fveq1d 6824 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((1st ‘( oppFunc ‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
5043, 49eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑌 = ((1st ‘( oppFunc ‘𝐿))‘𝑋))
51 eqid 2729 . . . . . . 7 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
52 lmdran.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐷 Func 1 ))
5352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 1 ))
54 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (⟨ 1 , 𝐶⟩ −∘F 𝐺) = (⟨ 1 , 𝐶⟩ −∘F 𝐺))
5533, 51, 53, 44, 54prcofdiag 49383 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((⟨ 1 , 𝐶⟩ −∘F 𝐺) ∘func 𝐿) = (𝐶Δfunc𝐷))
5619, 44, 6, 53prcoffunca 49375 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (⟨ 1 , 𝐶⟩ −∘F 𝐺) ∈ (( 1 FuncCat 𝐶) Func (𝐷 FuncCat 𝐶)))
5755, 47, 56cofuoppf 49139 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)) ∘func ( oppFunc ‘𝐿)) = ( oppFunc ‘(𝐶Δfunc𝐷)))
58 simprr 772 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶))
5918, 5, 56oppfoppc2 49131 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺)) ∈ ((oppCat‘( 1 FuncCat 𝐶)) Func (oppCat‘(𝐷 FuncCat 𝐶))))
6044, 45, 19, 33diagffth 49527 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐿 ∈ ((𝐶 Full ( 1 FuncCat 𝐶)) ∩ (𝐶 Faith ( 1 FuncCat 𝐶))))
619, 18, 60ffthoppf 49154 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ( oppFunc ‘𝐿) ∈ (((oppCat‘𝐶) Full (oppCat‘( 1 FuncCat 𝐶))) ∩ ((oppCat‘𝐶) Faith (oppCat‘( 1 FuncCat 𝐶)))))
6234adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
6348f1oeq1d 6759 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) ↔ (1st𝐿):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶)))
6462, 63mpbird 257 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶))
65 f1ofo 6771 . . . . . 6 ((1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–1-1-onto→( 1 Func 𝐶) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–onto→( 1 Func 𝐶))
6664, 65syl 17 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘( oppFunc ‘𝐿)):(Base‘𝐶)–onto→( 1 Func 𝐶))
6741, 42, 50, 57, 58, 59, 61, 66uptr2a 49211 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
6812, 40, 67bibiad 839 . . 3 (𝜑 → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
69 eqid 2729 . . . . . 6 (⟨ 1 , 𝐶⟩ −∘F 𝐺) = (⟨ 1 , 𝐶⟩ −∘F 𝐺)
7018, 5, 69ranval3 49620 . . . . 5 (𝐺 ∈ (𝐷 Func 1 ) → (𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹) = (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
7152, 70syl 17 . . . 4 (𝜑 → (𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹) = (( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
7271breqd 5103 . . 3 (𝜑 → (𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀𝑌(( oppFunc ‘(⟨ 1 , 𝐶⟩ −∘F 𝐺))((oppCat‘( 1 FuncCat 𝐶)) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀))
7368, 72bitr4d 282 . 2 (𝜑 → (𝑋(( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))
742, 73bitrid 283 1 (𝜑 → (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑀𝑌(𝐺(⟨𝐷, 1 ⟩ Ran 𝐶)𝐹)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4284  {csn 4577  cop 4583   class class class wbr 5092  dom cdm 5619  cres 5621  Fun wfun 6476  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Catccat 17570  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852  Δfunccdiag 18118   oppFunc coppf 49111   UP cup 49162   −∘F cprcof 49362  TermCatctermc 49461   Ran cran 49595   Limit clmd 49632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-oppc 17618  df-func 17765  df-cofu 17767  df-full 17813  df-fth 17814  df-nat 17853  df-fuc 17854  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122  df-oppf 49112  df-up 49163  df-swapf 49249  df-fuco 49306  df-prcof 49363  df-thinc 49407  df-termc 49462  df-ran 49597  df-lmd 49634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator