Proof of Theorem brab2d
| Step | Hyp | Ref
| Expression |
| 1 | | df-br 5126 |
. . . 4
⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 2 | | brab2d.1 |
. . . . 5
⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)}) |
| 3 | 2 | eleq2d 2819 |
. . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)})) |
| 4 | 1, 3 | bitrid 283 |
. . 3
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)})) |
| 5 | | elopab 5514 |
. . 3
⊢
(〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓))) |
| 6 | 4, 5 | bitrdi 287 |
. 2
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)))) |
| 7 | | eqcom 2741 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 8 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 9 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 10 | 8, 9 | opth 5463 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 11 | 7, 10 | sylbb1 237 |
. . . . . . . . 9
⊢
(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 12 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) |
| 13 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) |
| 14 | 12, 13 | bi2anan9 638 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 15 | 14 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 16 | 11, 15 | sylan 580 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉))) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 18 | 17 | adantrrr 725 |
. . . . . 6
⊢ ((𝜑 ∧ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓))) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 19 | 18 | ex 412 |
. . . . 5
⊢ (𝜑 → ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 20 | 19 | exlimdvv 1933 |
. . . 4
⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 21 | 20 | imp 406 |
. . 3
⊢ ((𝜑 ∧ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓))) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 22 | | simprl 770 |
. . 3
⊢ ((𝜑 ∧ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
| 23 | | simprl 770 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ 𝑈) |
| 24 | | simprr 772 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
| 25 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 26 | | brab2d.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| 27 | 25, 26 | anbi12d 632 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| 28 | 27 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| 29 | 23, 24, 28 | copsex2dv 5481 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| 30 | 21, 22, 29 | bibiad 839 |
. 2
⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉) ∧ 𝜓)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| 31 | 6, 30 | bitrd 279 |
1
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |