Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brab2d Structured version   Visualization version   GIF version

Theorem brab2d 32566
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
brab2d.1 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)})
brab2d.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
brab2d (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2d
StepHypRef Expression
1 df-br 5126 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brab2d.1 . . . . 5 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)})
32eleq2d 2819 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)}))
41, 3bitrid 283 . . 3 (𝜑 → (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)}))
5 elopab 5514 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)))
64, 5bitrdi 287 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))))
7 eqcom 2741 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
8 vex 3468 . . . . . . . . . . 11 𝑥 ∈ V
9 vex 3468 . . . . . . . . . . 11 𝑦 ∈ V
108, 9opth 5463 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
117, 10sylbb1 237 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑥 = 𝐴𝑦 = 𝐵))
12 eleq1 2821 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
13 eleq1 2821 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝑉𝐵𝑉))
1412, 13bi2anan9 638 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑈𝑦𝑉) ↔ (𝐴𝑈𝐵𝑉)))
1514biimpa 476 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑥𝑈𝑦𝑉)) → (𝐴𝑈𝐵𝑉))
1611, 15sylan 580 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝑈𝑦𝑉)) → (𝐴𝑈𝐵𝑉))
1716adantl 481 . . . . . . 7 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝑈𝑦𝑉))) → (𝐴𝑈𝐵𝑉))
1817adantrrr 725 . . . . . 6 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
1918ex 412 . . . . 5 (𝜑 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
2019exlimdvv 1933 . . . 4 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
2120imp 406 . . 3 ((𝜑 ∧ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
22 simprl 770 . . 3 ((𝜑 ∧ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)) → (𝐴𝑈𝐵𝑉))
23 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
24 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
2514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝑥𝑈𝑦𝑉) ↔ (𝐴𝑈𝐵𝑉)))
26 brab2d.2 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
2725, 26anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝑈𝑦𝑉) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2827adantlr 715 . . . 4 (((𝜑 ∧ (𝐴𝑈𝐵𝑉)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝑈𝑦𝑉) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2923, 24, 28copsex2dv 5481 . . 3 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
3021, 22, 29bibiad 839 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
316, 30bitrd 279 1 (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  cop 4614   class class class wbr 5125  {copab 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188
This theorem is referenced by:  erlcl1  33210  erlcl2  33211  erldi  33212  erlbrd  33213  erler  33215  fracerl  33254
  Copyright terms: Public domain W3C validator