Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brab2d Structured version   Visualization version   GIF version

Theorem brab2d 32580
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
brab2d.1 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)})
brab2d.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
brab2d (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2d
StepHypRef Expression
1 df-br 5087 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brab2d.1 . . . . 5 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)})
32eleq2d 2817 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)}))
41, 3bitrid 283 . . 3 (𝜑 → (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)}))
5 elopab 5462 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)))
64, 5bitrdi 287 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))))
7 eqcom 2738 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
8 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
9 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
108, 9opth 5411 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
117, 10sylbb1 237 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑥 = 𝐴𝑦 = 𝐵))
12 eleq1 2819 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
13 eleq1 2819 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝑉𝐵𝑉))
1412, 13bi2anan9 638 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑈𝑦𝑉) ↔ (𝐴𝑈𝐵𝑉)))
1514biimpa 476 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑥𝑈𝑦𝑉)) → (𝐴𝑈𝐵𝑉))
1611, 15sylan 580 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝑈𝑦𝑉)) → (𝐴𝑈𝐵𝑉))
1716adantl 481 . . . . . . 7 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝑈𝑦𝑉))) → (𝐴𝑈𝐵𝑉))
1817adantrrr 725 . . . . . 6 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
1918ex 412 . . . . 5 (𝜑 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
2019exlimdvv 1935 . . . 4 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
2120imp 406 . . 3 ((𝜑 ∧ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
22 simprl 770 . . 3 ((𝜑 ∧ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)) → (𝐴𝑈𝐵𝑉))
23 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
24 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
2514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝑥𝑈𝑦𝑉) ↔ (𝐴𝑈𝐵𝑉)))
26 brab2d.2 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
2725, 26anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝑈𝑦𝑉) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2827adantlr 715 . . . 4 (((𝜑 ∧ (𝐴𝑈𝐵𝑉)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝑈𝑦𝑉) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2923, 24, 28copsex2dv 5429 . . 3 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
3021, 22, 29bibiad 839 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝑈𝑦𝑉) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
316, 30bitrd 279 1 (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  cop 4577   class class class wbr 5086  {copab 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149
This theorem is referenced by:  erlcl1  33219  erlcl2  33220  erldi  33221  erlbrd  33222  erler  33224  fracerl  33264
  Copyright terms: Public domain W3C validator