Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brab2dd Structured version   Visualization version   GIF version

Theorem brab2dd 48675
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
brab2dd.1 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)})
brab2dd.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
brab2dd.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝑈𝐵𝑉)))
Assertion
Ref Expression
brab2dd (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2dd
StepHypRef Expression
1 df-br 5124 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brab2dd.1 . . . . 5 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)})
32eleq2d 2819 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)}))
41, 3bitrid 283 . . 3 (𝜑 → (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)}))
5 elopab 5512 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)))
64, 5bitrdi 287 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))))
7 simpl 482 . . . . . . 7 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))) → 𝜑)
8 eqcom 2741 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
9 vex 3467 . . . . . . . . . 10 𝑥 ∈ V
10 vex 3467 . . . . . . . . . 10 𝑦 ∈ V
119, 10opth 5461 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
128, 11sylbb1 237 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑥 = 𝐴𝑦 = 𝐵))
1312ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))) → (𝑥 = 𝐴𝑦 = 𝐵))
14 simprrl 780 . . . . . . 7 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))) → (𝑥𝐶𝑦𝐷))
15 brab2dd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝑈𝐵𝑉)))
1615biimpa 476 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ (𝑥𝐶𝑦𝐷)) → (𝐴𝑈𝐵𝑉))
177, 13, 14, 16syl21anc 837 . . . . . 6 ((𝜑 ∧ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
1817ex 412 . . . . 5 (𝜑 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
1918exlimdvv 1933 . . . 4 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)) → (𝐴𝑈𝐵𝑉)))
2019imp 406 . . 3 ((𝜑 ∧ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓))) → (𝐴𝑈𝐵𝑉))
21 simprl 770 . . 3 ((𝜑 ∧ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)) → (𝐴𝑈𝐵𝑉))
22 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
23 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
24 brab2dd.2 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
2515, 24anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝐶𝑦𝐷) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2625adantlr 715 . . . 4 (((𝜑 ∧ (𝐴𝑈𝐵𝑉)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (((𝑥𝐶𝑦𝐷) ∧ 𝜓) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2722, 23, 26copsex2dv 5479 . . 3 ((𝜑 ∧ (𝐴𝑈𝐵𝑉)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
2820, 21, 27bibiad 839 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)) ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
296, 28bitrd 279 1 (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  cop 4612   class class class wbr 5123  {copab 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186
This theorem is referenced by:  brab2ddw  48676  brab2ddw2  48677
  Copyright terms: Public domain W3C validator