Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptr2 Structured version   Visualization version   GIF version

Theorem uptr2 49332
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
uptr2.a 𝐴 = (Base‘𝐶)
uptr2.b 𝐵 = (Base‘𝐷)
uptr2.y (𝜑𝑌 = (𝑅𝑋))
uptr2.r (𝜑𝑅:𝐴onto𝐵)
uptr2.s (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
uptr2.f (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
uptr2.x (𝜑𝑋𝐴)
uptr2.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
uptr2 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))

Proof of Theorem uptr2
Dummy variables 𝑔 𝑘 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀)
2 eqid 2731 . . . 4 (Base‘𝐸) = (Base‘𝐸)
31, 2uprcl3 49301 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
4 eqid 2731 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 4uprcl5 49303 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
63, 5jca 511 . 2 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
7 simpr 484 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀)
87, 2uprcl3 49301 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
97, 4uprcl5 49303 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
10 uptr2.y . . . . . . . 8 (𝜑𝑌 = (𝑅𝑋))
1110fveq2d 6826 . . . . . . 7 (𝜑 → (𝐾𝑌) = (𝐾‘(𝑅𝑋)))
12 uptr2.a . . . . . . . 8 𝐴 = (Base‘𝐶)
13 uptr2.s . . . . . . . . 9 (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
14 inss1 4184 . . . . . . . . . . 11 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷)
15 fullfunc 17815 . . . . . . . . . . 11 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1614, 15sstri 3939 . . . . . . . . . 10 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷)
1716ssbri 5134 . . . . . . . . 9 (𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆𝑅(𝐶 Func 𝐷)𝑆)
1813, 17syl 17 . . . . . . . 8 (𝜑𝑅(𝐶 Func 𝐷)𝑆)
19 uptr2.k . . . . . . . 8 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
20 uptr2.f . . . . . . . 8 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
21 uptr2.x . . . . . . . 8 (𝜑𝑋𝐴)
2212, 18, 19, 20, 21cofu1a 49205 . . . . . . 7 (𝜑 → (𝐾‘(𝑅𝑋)) = (𝐹𝑋))
2311, 22eqtrd 2766 . . . . . 6 (𝜑 → (𝐾𝑌) = (𝐹𝑋))
2423oveq2d 7362 . . . . 5 (𝜑 → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
2524adantr 480 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
269, 25eleqtrd 2833 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
278, 26jca 511 . 2 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
28 uptr2.r . . . . . . 7 (𝜑𝑅:𝐴onto𝐵)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴onto𝐵)
30 fof 6735 . . . . . 6 (𝑅:𝐴onto𝐵𝑅:𝐴𝐵)
3129, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴𝐵)
3231ffvelcdmda 7017 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴) → (𝑅𝑥) ∈ 𝐵)
33 foelrn 7040 . . . . 5 ((𝑅:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
3429, 33sylan 580 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
35 simp3 1138 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑦 = (𝑅𝑥))
3635fveq2d 6826 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐾‘(𝑅𝑥)))
37 simp1l 1198 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝜑)
3837, 18syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅(𝐶 Func 𝐷)𝑆)
3919adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐾(𝐷 Func 𝐸)𝐿)
40393ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝐾(𝐷 Func 𝐸)𝐿)
4137, 20syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
42 simp2 1137 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑥𝐴)
4312, 38, 40, 41, 42cofu1a 49205 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾‘(𝑅𝑥)) = (𝐹𝑥))
4436, 43eqtrd 2766 . . . . . 6 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐹𝑥))
4544oveq2d 7362 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑍(Hom ‘𝐸)(𝐾𝑦)) = (𝑍(Hom ‘𝐸)(𝐹𝑥)))
46 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
47 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
4837, 13syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
4937, 21syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑋𝐴)
5012, 46, 47, 48, 49, 42ffthf1o 17828 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5137, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑌 = (𝑅𝑋))
5251, 35oveq12d 7364 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑌(Hom ‘𝐷)𝑦) = ((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5352f1oeq3d 6760 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ↔ (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥))))
5450, 53mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦))
55 f1of 6763 . . . . . . . 8 ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5654, 55syl 17 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5756ffvelcdmda 7017 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) → ((𝑋𝑆𝑥)‘𝑘) ∈ (𝑌(Hom ‘𝐷)𝑦))
58 f1ofveu 7340 . . . . . . . 8 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙)
59 eqcom 2738 . . . . . . . . 9 (((𝑋𝑆𝑥)‘𝑘) = 𝑙𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6059reubii 3355 . . . . . . . 8 (∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6158, 60sylib 218 . . . . . . 7 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6254, 61sylan 580 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6337, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑌) = (𝐹𝑋))
6463opeq2d 4829 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ⟨𝑍, (𝐾𝑌)⟩ = ⟨𝑍, (𝐹𝑋)⟩)
6564, 44oveq12d 7364 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6665adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6751adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑌 = (𝑅𝑋))
68 simpl3 1194 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑦 = (𝑅𝑥))
6967, 68oveq12d 7364 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑌𝐿𝑦) = ((𝑅𝑋)𝐿(𝑅𝑥)))
70 simprr 772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑙 = ((𝑋𝑆𝑥)‘𝑘))
7169, 70fveq12d 6829 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)))
7238adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑅(𝐶 Func 𝐷)𝑆)
7340adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝐾(𝐷 Func 𝐸)𝐿)
7441adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
7549adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑋𝐴)
7642adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑥𝐴)
77 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥))
7812, 72, 73, 74, 75, 76, 46, 77cofu2a 49206 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)) = ((𝑋𝐺𝑥)‘𝑘))
7971, 78eqtrd 2766 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = ((𝑋𝐺𝑥)‘𝑘))
80 eqidd 2732 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑀 = 𝑀)
8166, 79, 80oveq123d 7367 . . . . . . 7 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
8281eqeq2d 2742 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ 𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8357, 62, 82reuxfr1dd 48917 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8445, 83raleqbidv 3312 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8532, 34, 84ralxfrd2 5348 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
86 uptr2.b . . . 4 𝐵 = (Base‘𝐷)
87 eqid 2731 . . . 4 (comp‘𝐸) = (comp‘𝐸)
88 simprl 770 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑍 ∈ (Base‘𝐸))
8910adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌 = (𝑅𝑋))
9021adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑋𝐴)
9131, 90ffvelcdmd 7018 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑅𝑋) ∈ 𝐵)
9289, 91eqeltrd 2831 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌𝐵)
93 simprr 772 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9424adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9593, 94eleqtrrd 2834 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
9686, 2, 47, 4, 87, 88, 39, 92, 95isup 49291 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀 ↔ ∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀)))
9718, 19cofucla 49207 . . . . . . 7 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) ∈ (𝐶 Func 𝐸))
9820, 97eqeltrrd 2832 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
99 df-br 5090 . . . . . 6 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
10098, 99sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐸)𝐺)
101100adantr 480 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐹(𝐶 Func 𝐸)𝐺)
10212, 2, 46, 4, 87, 88, 101, 90, 93isup 49291 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀 ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
10385, 96, 1023bitr4rd 312 . 2 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
1046, 27, 103bibiad 839 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cin 3896  cop 4579   class class class wbr 5089  wf 6477  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  compcco 17173   Func cfunc 17761  func ccofu 17763   Full cful 17811   Faith cfth 17812   UP cup 49284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-func 17765  df-cofu 17767  df-full 17813  df-fth 17814  df-up 49285
This theorem is referenced by:  uptr2a  49333
  Copyright terms: Public domain W3C validator