Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptr2 Structured version   Visualization version   GIF version

Theorem uptr2 49216
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
uptr2.a 𝐴 = (Base‘𝐶)
uptr2.b 𝐵 = (Base‘𝐷)
uptr2.y (𝜑𝑌 = (𝑅𝑋))
uptr2.r (𝜑𝑅:𝐴onto𝐵)
uptr2.s (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
uptr2.f (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
uptr2.x (𝜑𝑋𝐴)
uptr2.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
uptr2 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))

Proof of Theorem uptr2
Dummy variables 𝑔 𝑘 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀)
2 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
31, 2uprcl3 49185 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
4 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 4uprcl5 49187 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
63, 5jca 511 . 2 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
7 simpr 484 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀)
87, 2uprcl3 49185 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
97, 4uprcl5 49187 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
10 uptr2.y . . . . . . . 8 (𝜑𝑌 = (𝑅𝑋))
1110fveq2d 6826 . . . . . . 7 (𝜑 → (𝐾𝑌) = (𝐾‘(𝑅𝑋)))
12 uptr2.a . . . . . . . 8 𝐴 = (Base‘𝐶)
13 uptr2.s . . . . . . . . 9 (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
14 inss1 4188 . . . . . . . . . . 11 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷)
15 fullfunc 17815 . . . . . . . . . . 11 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1614, 15sstri 3945 . . . . . . . . . 10 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷)
1716ssbri 5137 . . . . . . . . 9 (𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆𝑅(𝐶 Func 𝐷)𝑆)
1813, 17syl 17 . . . . . . . 8 (𝜑𝑅(𝐶 Func 𝐷)𝑆)
19 uptr2.k . . . . . . . 8 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
20 uptr2.f . . . . . . . 8 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
21 uptr2.x . . . . . . . 8 (𝜑𝑋𝐴)
2212, 18, 19, 20, 21cofu1a 49089 . . . . . . 7 (𝜑 → (𝐾‘(𝑅𝑋)) = (𝐹𝑋))
2311, 22eqtrd 2764 . . . . . 6 (𝜑 → (𝐾𝑌) = (𝐹𝑋))
2423oveq2d 7365 . . . . 5 (𝜑 → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
2524adantr 480 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
269, 25eleqtrd 2830 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
278, 26jca 511 . 2 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
28 uptr2.r . . . . . . 7 (𝜑𝑅:𝐴onto𝐵)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴onto𝐵)
30 fof 6736 . . . . . 6 (𝑅:𝐴onto𝐵𝑅:𝐴𝐵)
3129, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴𝐵)
3231ffvelcdmda 7018 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴) → (𝑅𝑥) ∈ 𝐵)
33 foelrn 7041 . . . . 5 ((𝑅:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
3429, 33sylan 580 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
35 simp3 1138 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑦 = (𝑅𝑥))
3635fveq2d 6826 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐾‘(𝑅𝑥)))
37 simp1l 1198 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝜑)
3837, 18syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅(𝐶 Func 𝐷)𝑆)
3919adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐾(𝐷 Func 𝐸)𝐿)
40393ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝐾(𝐷 Func 𝐸)𝐿)
4137, 20syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
42 simp2 1137 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑥𝐴)
4312, 38, 40, 41, 42cofu1a 49089 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾‘(𝑅𝑥)) = (𝐹𝑥))
4436, 43eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐹𝑥))
4544oveq2d 7365 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑍(Hom ‘𝐸)(𝐾𝑦)) = (𝑍(Hom ‘𝐸)(𝐹𝑥)))
46 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
47 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
4837, 13syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
4937, 21syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑋𝐴)
5012, 46, 47, 48, 49, 42ffthf1o 17828 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5137, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑌 = (𝑅𝑋))
5251, 35oveq12d 7367 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑌(Hom ‘𝐷)𝑦) = ((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5352f1oeq3d 6761 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ↔ (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥))))
5450, 53mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦))
55 f1of 6764 . . . . . . . 8 ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5654, 55syl 17 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5756ffvelcdmda 7018 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) → ((𝑋𝑆𝑥)‘𝑘) ∈ (𝑌(Hom ‘𝐷)𝑦))
58 f1ofveu 7343 . . . . . . . 8 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙)
59 eqcom 2736 . . . . . . . . 9 (((𝑋𝑆𝑥)‘𝑘) = 𝑙𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6059reubii 3352 . . . . . . . 8 (∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6158, 60sylib 218 . . . . . . 7 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6254, 61sylan 580 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6337, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑌) = (𝐹𝑋))
6463opeq2d 4831 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ⟨𝑍, (𝐾𝑌)⟩ = ⟨𝑍, (𝐹𝑋)⟩)
6564, 44oveq12d 7367 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6665adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6751adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑌 = (𝑅𝑋))
68 simpl3 1194 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑦 = (𝑅𝑥))
6967, 68oveq12d 7367 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑌𝐿𝑦) = ((𝑅𝑋)𝐿(𝑅𝑥)))
70 simprr 772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑙 = ((𝑋𝑆𝑥)‘𝑘))
7169, 70fveq12d 6829 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)))
7238adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑅(𝐶 Func 𝐷)𝑆)
7340adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝐾(𝐷 Func 𝐸)𝐿)
7441adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
7549adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑋𝐴)
7642adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑥𝐴)
77 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥))
7812, 72, 73, 74, 75, 76, 46, 77cofu2a 49090 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)) = ((𝑋𝐺𝑥)‘𝑘))
7971, 78eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = ((𝑋𝐺𝑥)‘𝑘))
80 eqidd 2730 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑀 = 𝑀)
8166, 79, 80oveq123d 7370 . . . . . . 7 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
8281eqeq2d 2740 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ 𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8357, 62, 82reuxfr1dd 48801 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8445, 83raleqbidv 3309 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8532, 34, 84ralxfrd2 5351 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
86 uptr2.b . . . 4 𝐵 = (Base‘𝐷)
87 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
88 simprl 770 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑍 ∈ (Base‘𝐸))
8910adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌 = (𝑅𝑋))
9021adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑋𝐴)
9131, 90ffvelcdmd 7019 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑅𝑋) ∈ 𝐵)
9289, 91eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌𝐵)
93 simprr 772 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9424adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9593, 94eleqtrrd 2831 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
9686, 2, 47, 4, 87, 88, 39, 92, 95isup 49175 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀 ↔ ∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀)))
9718, 19cofucla 49091 . . . . . . 7 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) ∈ (𝐶 Func 𝐸))
9820, 97eqeltrrd 2829 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
99 df-br 5093 . . . . . 6 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
10098, 99sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐸)𝐺)
101100adantr 480 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐹(𝐶 Func 𝐸)𝐺)
10212, 2, 46, 4, 87, 88, 101, 90, 93isup 49175 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀 ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
10385, 96, 1023bitr4rd 312 . 2 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
1046, 27, 103bibiad 839 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  cin 3902  cop 4583   class class class wbr 5092  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173   Func cfunc 17761  func ccofu 17763   Full cful 17811   Faith cfth 17812   UP cup 49168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-func 17765  df-cofu 17767  df-full 17813  df-fth 17814  df-up 49169
This theorem is referenced by:  uptr2a  49217
  Copyright terms: Public domain W3C validator