Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptr2 Structured version   Visualization version   GIF version

Theorem uptr2 49203
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
uptr2.a 𝐴 = (Base‘𝐶)
uptr2.b 𝐵 = (Base‘𝐷)
uptr2.y (𝜑𝑌 = (𝑅𝑋))
uptr2.r (𝜑𝑅:𝐴onto𝐵)
uptr2.s (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
uptr2.f (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
uptr2.x (𝜑𝑋𝐴)
uptr2.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
uptr2 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))

Proof of Theorem uptr2
Dummy variables 𝑔 𝑘 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀)
2 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
31, 2uprcl3 49172 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
4 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 4uprcl5 49174 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
63, 5jca 511 . 2 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
7 simpr 484 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀)
87, 2uprcl3 49172 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
97, 4uprcl5 49174 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
10 uptr2.y . . . . . . . 8 (𝜑𝑌 = (𝑅𝑋))
1110fveq2d 6844 . . . . . . 7 (𝜑 → (𝐾𝑌) = (𝐾‘(𝑅𝑋)))
12 uptr2.a . . . . . . . 8 𝐴 = (Base‘𝐶)
13 uptr2.s . . . . . . . . 9 (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
14 inss1 4196 . . . . . . . . . . 11 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷)
15 fullfunc 17850 . . . . . . . . . . 11 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1614, 15sstri 3953 . . . . . . . . . 10 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷)
1716ssbri 5147 . . . . . . . . 9 (𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆𝑅(𝐶 Func 𝐷)𝑆)
1813, 17syl 17 . . . . . . . 8 (𝜑𝑅(𝐶 Func 𝐷)𝑆)
19 uptr2.k . . . . . . . 8 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
20 uptr2.f . . . . . . . 8 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
21 uptr2.x . . . . . . . 8 (𝜑𝑋𝐴)
2212, 18, 19, 20, 21cofu1a 49076 . . . . . . 7 (𝜑 → (𝐾‘(𝑅𝑋)) = (𝐹𝑋))
2311, 22eqtrd 2764 . . . . . 6 (𝜑 → (𝐾𝑌) = (𝐹𝑋))
2423oveq2d 7385 . . . . 5 (𝜑 → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
2524adantr 480 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
269, 25eleqtrd 2830 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
278, 26jca 511 . 2 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
28 uptr2.r . . . . . . 7 (𝜑𝑅:𝐴onto𝐵)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴onto𝐵)
30 fof 6754 . . . . . 6 (𝑅:𝐴onto𝐵𝑅:𝐴𝐵)
3129, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴𝐵)
3231ffvelcdmda 7038 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴) → (𝑅𝑥) ∈ 𝐵)
33 foelrn 7061 . . . . 5 ((𝑅:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
3429, 33sylan 580 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
35 simp3 1138 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑦 = (𝑅𝑥))
3635fveq2d 6844 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐾‘(𝑅𝑥)))
37 simp1l 1198 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝜑)
3837, 18syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅(𝐶 Func 𝐷)𝑆)
3919adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐾(𝐷 Func 𝐸)𝐿)
40393ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝐾(𝐷 Func 𝐸)𝐿)
4137, 20syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
42 simp2 1137 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑥𝐴)
4312, 38, 40, 41, 42cofu1a 49076 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾‘(𝑅𝑥)) = (𝐹𝑥))
4436, 43eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐹𝑥))
4544oveq2d 7385 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑍(Hom ‘𝐸)(𝐾𝑦)) = (𝑍(Hom ‘𝐸)(𝐹𝑥)))
46 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
47 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
4837, 13syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
4937, 21syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑋𝐴)
5012, 46, 47, 48, 49, 42ffthf1o 17863 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5137, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑌 = (𝑅𝑋))
5251, 35oveq12d 7387 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑌(Hom ‘𝐷)𝑦) = ((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5352f1oeq3d 6779 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ↔ (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥))))
5450, 53mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦))
55 f1of 6782 . . . . . . . 8 ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5654, 55syl 17 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5756ffvelcdmda 7038 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) → ((𝑋𝑆𝑥)‘𝑘) ∈ (𝑌(Hom ‘𝐷)𝑦))
58 f1ofveu 7363 . . . . . . . 8 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙)
59 eqcom 2736 . . . . . . . . 9 (((𝑋𝑆𝑥)‘𝑘) = 𝑙𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6059reubii 3360 . . . . . . . 8 (∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6158, 60sylib 218 . . . . . . 7 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6254, 61sylan 580 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6337, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑌) = (𝐹𝑋))
6463opeq2d 4840 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ⟨𝑍, (𝐾𝑌)⟩ = ⟨𝑍, (𝐹𝑋)⟩)
6564, 44oveq12d 7387 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6665adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6751adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑌 = (𝑅𝑋))
68 simpl3 1194 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑦 = (𝑅𝑥))
6967, 68oveq12d 7387 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑌𝐿𝑦) = ((𝑅𝑋)𝐿(𝑅𝑥)))
70 simprr 772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑙 = ((𝑋𝑆𝑥)‘𝑘))
7169, 70fveq12d 6847 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)))
7238adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑅(𝐶 Func 𝐷)𝑆)
7340adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝐾(𝐷 Func 𝐸)𝐿)
7441adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
7549adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑋𝐴)
7642adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑥𝐴)
77 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥))
7812, 72, 73, 74, 75, 76, 46, 77cofu2a 49077 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)) = ((𝑋𝐺𝑥)‘𝑘))
7971, 78eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = ((𝑋𝐺𝑥)‘𝑘))
80 eqidd 2730 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑀 = 𝑀)
8166, 79, 80oveq123d 7390 . . . . . . 7 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
8281eqeq2d 2740 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ 𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8357, 62, 82reuxfr1dd 48788 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8445, 83raleqbidv 3316 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8532, 34, 84ralxfrd2 5362 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
86 uptr2.b . . . 4 𝐵 = (Base‘𝐷)
87 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
88 simprl 770 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑍 ∈ (Base‘𝐸))
8910adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌 = (𝑅𝑋))
9021adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑋𝐴)
9131, 90ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑅𝑋) ∈ 𝐵)
9289, 91eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌𝐵)
93 simprr 772 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9424adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9593, 94eleqtrrd 2831 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
9686, 2, 47, 4, 87, 88, 39, 92, 95isup 49162 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀 ↔ ∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀)))
9718, 19cofucla 49078 . . . . . . 7 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) ∈ (𝐶 Func 𝐸))
9820, 97eqeltrrd 2829 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
99 df-br 5103 . . . . . 6 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
10098, 99sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐸)𝐺)
101100adantr 480 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐹(𝐶 Func 𝐸)𝐺)
10212, 2, 46, 4, 87, 88, 101, 90, 93isup 49162 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀 ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
10385, 96, 1023bitr4rd 312 . 2 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
1046, 27, 103bibiad 839 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3349  cin 3910  cop 4591   class class class wbr 5102  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208   Func cfunc 17796  func ccofu 17798   Full cful 17846   Faith cfth 17847   UP cup 49155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802  df-full 17848  df-fth 17849  df-up 49156
This theorem is referenced by:  uptr2a  49204
  Copyright terms: Public domain W3C validator