| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀) → 𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀) |
| 2 | | eqid 2730 |
. . . 4
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 3 | 1, 2 | uprcl3 49169 |
. . 3
⊢ ((𝜑 ∧ 𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸)) |
| 4 | | eqid 2730 |
. . . 4
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 5 | 1, 4 | uprcl5 49171 |
. . 3
⊢ ((𝜑 ∧ 𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 6 | 3, 5 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) |
| 7 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) |
| 8 | 7, 2 | uprcl3 49169 |
. . 3
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸)) |
| 9 | 7, 4 | uprcl5 49171 |
. . . 4
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾‘𝑌))) |
| 10 | | uptr2.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 = (𝑅‘𝑋)) |
| 11 | 10 | fveq2d 6864 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝑌) = (𝐾‘(𝑅‘𝑋))) |
| 12 | | uptr2.a |
. . . . . . . 8
⊢ 𝐴 = (Base‘𝐶) |
| 13 | | uptr2.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆) |
| 14 | | inss1 4202 |
. . . . . . . . . . 11
⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷) |
| 15 | | fullfunc 17876 |
. . . . . . . . . . 11
⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) |
| 16 | 14, 15 | sstri 3958 |
. . . . . . . . . 10
⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷) |
| 17 | 16 | ssbri 5154 |
. . . . . . . . 9
⊢ (𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆 → 𝑅(𝐶 Func 𝐷)𝑆) |
| 18 | 13, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅(𝐶 Func 𝐷)𝑆) |
| 19 | | uptr2.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 20 | | uptr2.f |
. . . . . . . 8
⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func
〈𝑅, 𝑆〉) = 〈𝐹, 𝐺〉) |
| 21 | | uptr2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 22 | 12, 18, 19, 20, 21 | cofu1a 49073 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘(𝑅‘𝑋)) = (𝐹‘𝑋)) |
| 23 | 11, 22 | eqtrd 2765 |
. . . . . 6
⊢ (𝜑 → (𝐾‘𝑌) = (𝐹‘𝑋)) |
| 24 | 23 | oveq2d 7405 |
. . . . 5
⊢ (𝜑 → (𝑍(Hom ‘𝐸)(𝐾‘𝑌)) = (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 25 | 24 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍(Hom ‘𝐸)(𝐾‘𝑌)) = (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 26 | 9, 25 | eleqtrd 2831 |
. . 3
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 27 | 8, 26 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) |
| 28 | | uptr2.r |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐴–onto→𝐵) |
| 29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑅:𝐴–onto→𝐵) |
| 30 | | fof 6774 |
. . . . . 6
⊢ (𝑅:𝐴–onto→𝐵 → 𝑅:𝐴⟶𝐵) |
| 31 | 29, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑅:𝐴⟶𝐵) |
| 32 | 31 | ffvelcdmda 7058 |
. . . 4
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴) → (𝑅‘𝑥) ∈ 𝐵) |
| 33 | | foelrn 7081 |
. . . . 5
⊢ ((𝑅:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝑅‘𝑥)) |
| 34 | 29, 33 | sylan 580 |
. . . 4
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝑅‘𝑥)) |
| 35 | | simp3 1138 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑦 = (𝑅‘𝑥)) |
| 36 | 35 | fveq2d 6864 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝐾‘𝑦) = (𝐾‘(𝑅‘𝑥))) |
| 37 | | simp1l 1198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝜑) |
| 38 | 37, 18 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑅(𝐶 Func 𝐷)𝑆) |
| 39 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 40 | 39 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 41 | 37, 20 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (〈𝐾, 𝐿〉 ∘func
〈𝑅, 𝑆〉) = 〈𝐹, 𝐺〉) |
| 42 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑥 ∈ 𝐴) |
| 43 | 12, 38, 40, 41, 42 | cofu1a 49073 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝐾‘(𝑅‘𝑥)) = (𝐹‘𝑥)) |
| 44 | 36, 43 | eqtrd 2765 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝐾‘𝑦) = (𝐹‘𝑥)) |
| 45 | 44 | oveq2d 7405 |
. . . . 5
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝑍(Hom ‘𝐸)(𝐾‘𝑦)) = (𝑍(Hom ‘𝐸)(𝐹‘𝑥))) |
| 46 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 47 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 48 | 37, 13 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆) |
| 49 | 37, 21 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑋 ∈ 𝐴) |
| 50 | 12, 46, 47, 48, 49, 42 | ffthf1o 17889 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅‘𝑋)(Hom ‘𝐷)(𝑅‘𝑥))) |
| 51 | 37, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 𝑌 = (𝑅‘𝑋)) |
| 52 | 51, 35 | oveq12d 7407 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝑌(Hom ‘𝐷)𝑦) = ((𝑅‘𝑋)(Hom ‘𝐷)(𝑅‘𝑥))) |
| 53 | 52 | f1oeq3d 6799 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ↔ (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅‘𝑋)(Hom ‘𝐷)(𝑅‘𝑥)))) |
| 54 | 50, 53 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦)) |
| 55 | | f1of 6802 |
. . . . . . . 8
⊢ ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦)) |
| 56 | 54, 55 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦)) |
| 57 | 56 | ffvelcdmda 7058 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) → ((𝑋𝑆𝑥)‘𝑘) ∈ (𝑌(Hom ‘𝐷)𝑦)) |
| 58 | | f1ofveu 7383 |
. . . . . . . 8
⊢ (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙) |
| 59 | | eqcom 2737 |
. . . . . . . . 9
⊢ (((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ 𝑙 = ((𝑋𝑆𝑥)‘𝑘)) |
| 60 | 59 | reubii 3365 |
. . . . . . . 8
⊢
(∃!𝑘 ∈
(𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘)) |
| 61 | 58, 60 | sylib 218 |
. . . . . . 7
⊢ (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘)) |
| 62 | 54, 61 | sylan 580 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘)) |
| 63 | 37, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (𝐾‘𝑌) = (𝐹‘𝑋)) |
| 64 | 63 | opeq2d 4846 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → 〈𝑍, (𝐾‘𝑌)〉 = 〈𝑍, (𝐹‘𝑋)〉) |
| 65 | 64, 44 | oveq12d 7407 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦)) = (〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))) |
| 66 | 65 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦)) = (〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))) |
| 67 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑌 = (𝑅‘𝑋)) |
| 68 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑦 = (𝑅‘𝑥)) |
| 69 | 67, 68 | oveq12d 7407 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑌𝐿𝑦) = ((𝑅‘𝑋)𝐿(𝑅‘𝑥))) |
| 70 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑙 = ((𝑋𝑆𝑥)‘𝑘)) |
| 71 | 69, 70 | fveq12d 6867 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = (((𝑅‘𝑋)𝐿(𝑅‘𝑥))‘((𝑋𝑆𝑥)‘𝑘))) |
| 72 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑅(𝐶 Func 𝐷)𝑆) |
| 73 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 74 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (〈𝐾, 𝐿〉 ∘func
〈𝑅, 𝑆〉) = 〈𝐹, 𝐺〉) |
| 75 | 49 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑋 ∈ 𝐴) |
| 76 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑥 ∈ 𝐴) |
| 77 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) |
| 78 | 12, 72, 73, 74, 75, 76, 46, 77 | cofu2a 49074 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑅‘𝑋)𝐿(𝑅‘𝑥))‘((𝑋𝑆𝑥)‘𝑘)) = ((𝑋𝐺𝑥)‘𝑘)) |
| 79 | 71, 78 | eqtrd 2765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = ((𝑋𝐺𝑥)‘𝑘)) |
| 80 | | eqidd 2731 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑀 = 𝑀) |
| 81 | 66, 79, 80 | oveq123d 7410 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀) = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀)) |
| 82 | 81 | eqeq2d 2741 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑔 = (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀) ↔ 𝑔 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀))) |
| 83 | 57, 62, 82 | reuxfr1dd 48785 |
. . . . 5
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀))) |
| 84 | 45, 83 | raleqbidv 3321 |
. . . 4
⊢ (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑅‘𝑥)) → (∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀) ↔ ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀))) |
| 85 | 32, 34, 84 | ralxfrd2 5369 |
. . 3
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀) ↔ ∀𝑥 ∈ 𝐴 ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀))) |
| 86 | | uptr2.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
| 87 | | eqid 2730 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 88 | | simprl 770 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑍 ∈ (Base‘𝐸)) |
| 89 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑌 = (𝑅‘𝑋)) |
| 90 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑋 ∈ 𝐴) |
| 91 | 31, 90 | ffvelcdmd 7059 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (𝑅‘𝑋) ∈ 𝐵) |
| 92 | 89, 91 | eqeltrd 2829 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑌 ∈ 𝐵) |
| 93 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 94 | 24 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (𝑍(Hom ‘𝐸)(𝐾‘𝑌)) = (𝑍(Hom ‘𝐸)(𝐹‘𝑋))) |
| 95 | 93, 94 | eleqtrrd 2832 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾‘𝑌))) |
| 96 | 86, 2, 47, 4, 87, 88, 39, 92, 95 | isup 49159 |
. . 3
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(〈𝑍, (𝐾‘𝑌)〉(comp‘𝐸)(𝐾‘𝑦))𝑀))) |
| 97 | 18, 19 | cofucla 49075 |
. . . . . . 7
⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func
〈𝑅, 𝑆〉) ∈ (𝐶 Func 𝐸)) |
| 98 | 20, 97 | eqeltrrd 2830 |
. . . . . 6
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸)) |
| 99 | | df-br 5110 |
. . . . . 6
⊢ (𝐹(𝐶 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸)) |
| 100 | 98, 99 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝐹(𝐶 Func 𝐸)𝐺) |
| 101 | 100 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → 𝐹(𝐶 Func 𝐸)𝐺) |
| 102 | 12, 2, 46, 4, 87, 88, 101, 90, 93 | isup 49159 |
. . 3
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀 ↔ ∀𝑥 ∈ 𝐴 ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀))) |
| 103 | 85, 96, 102 | 3bitr4rd 312 |
. 2
⊢ ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹‘𝑋)))) → (𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀)) |
| 104 | 6, 27, 103 | bibiad 839 |
1
⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈𝐾, 𝐿〉(𝐷 UP 𝐸)𝑍)𝑀)) |