Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptr2 Structured version   Visualization version   GIF version

Theorem uptr2 49200
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
uptr2.a 𝐴 = (Base‘𝐶)
uptr2.b 𝐵 = (Base‘𝐷)
uptr2.y (𝜑𝑌 = (𝑅𝑋))
uptr2.r (𝜑𝑅:𝐴onto𝐵)
uptr2.s (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
uptr2.f (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
uptr2.x (𝜑𝑋𝐴)
uptr2.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
Assertion
Ref Expression
uptr2 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))

Proof of Theorem uptr2
Dummy variables 𝑔 𝑘 𝑙 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀)
2 eqid 2730 . . . 4 (Base‘𝐸) = (Base‘𝐸)
31, 2uprcl3 49169 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
4 eqid 2730 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 4uprcl5 49171 . . 3 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
63, 5jca 511 . 2 ((𝜑𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
7 simpr 484 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀)
87, 2uprcl3 49169 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑍 ∈ (Base‘𝐸))
97, 4uprcl5 49171 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
10 uptr2.y . . . . . . . 8 (𝜑𝑌 = (𝑅𝑋))
1110fveq2d 6864 . . . . . . 7 (𝜑 → (𝐾𝑌) = (𝐾‘(𝑅𝑋)))
12 uptr2.a . . . . . . . 8 𝐴 = (Base‘𝐶)
13 uptr2.s . . . . . . . . 9 (𝜑𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
14 inss1 4202 . . . . . . . . . . 11 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷)
15 fullfunc 17876 . . . . . . . . . . 11 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1614, 15sstri 3958 . . . . . . . . . 10 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷)
1716ssbri 5154 . . . . . . . . 9 (𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆𝑅(𝐶 Func 𝐷)𝑆)
1813, 17syl 17 . . . . . . . 8 (𝜑𝑅(𝐶 Func 𝐷)𝑆)
19 uptr2.k . . . . . . . 8 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
20 uptr2.f . . . . . . . 8 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
21 uptr2.x . . . . . . . 8 (𝜑𝑋𝐴)
2212, 18, 19, 20, 21cofu1a 49073 . . . . . . 7 (𝜑 → (𝐾‘(𝑅𝑋)) = (𝐹𝑋))
2311, 22eqtrd 2765 . . . . . 6 (𝜑 → (𝐾𝑌) = (𝐹𝑋))
2423oveq2d 7405 . . . . 5 (𝜑 → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
2524adantr 480 . . . 4 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
269, 25eleqtrd 2831 . . 3 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
278, 26jca 511 . 2 ((𝜑𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀) → (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋))))
28 uptr2.r . . . . . . 7 (𝜑𝑅:𝐴onto𝐵)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴onto𝐵)
30 fof 6774 . . . . . 6 (𝑅:𝐴onto𝐵𝑅:𝐴𝐵)
3129, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑅:𝐴𝐵)
3231ffvelcdmda 7058 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴) → (𝑅𝑥) ∈ 𝐵)
33 foelrn 7081 . . . . 5 ((𝑅:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
3429, 33sylan 580 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝑅𝑥))
35 simp3 1138 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑦 = (𝑅𝑥))
3635fveq2d 6864 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐾‘(𝑅𝑥)))
37 simp1l 1198 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝜑)
3837, 18syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅(𝐶 Func 𝐷)𝑆)
3919adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐾(𝐷 Func 𝐸)𝐿)
40393ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝐾(𝐷 Func 𝐸)𝐿)
4137, 20syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
42 simp2 1137 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑥𝐴)
4312, 38, 40, 41, 42cofu1a 49073 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾‘(𝑅𝑥)) = (𝐹𝑥))
4436, 43eqtrd 2765 . . . . . 6 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑦) = (𝐹𝑥))
4544oveq2d 7405 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑍(Hom ‘𝐸)(𝐾𝑦)) = (𝑍(Hom ‘𝐸)(𝐹𝑥)))
46 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
47 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
4837, 13syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑅((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝑆)
4937, 21syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑋𝐴)
5012, 46, 47, 48, 49, 42ffthf1o 17889 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5137, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → 𝑌 = (𝑅𝑋))
5251, 35oveq12d 7407 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑌(Hom ‘𝐷)𝑦) = ((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥)))
5352f1oeq3d 6799 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ↔ (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→((𝑅𝑋)(Hom ‘𝐷)(𝑅𝑥))))
5450, 53mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦))
55 f1of 6802 . . . . . . . 8 ((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5654, 55syl 17 . . . . . . 7 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)⟶(𝑌(Hom ‘𝐷)𝑦))
5756ffvelcdmda 7058 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)) → ((𝑋𝑆𝑥)‘𝑘) ∈ (𝑌(Hom ‘𝐷)𝑦))
58 f1ofveu 7383 . . . . . . . 8 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙)
59 eqcom 2737 . . . . . . . . 9 (((𝑋𝑆𝑥)‘𝑘) = 𝑙𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6059reubii 3365 . . . . . . . 8 (∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)((𝑋𝑆𝑥)‘𝑘) = 𝑙 ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6158, 60sylib 218 . . . . . . 7 (((𝑋𝑆𝑥):(𝑋(Hom ‘𝐶)𝑥)–1-1-onto→(𝑌(Hom ‘𝐷)𝑦) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6254, 61sylan 580 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ 𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)) → ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑙 = ((𝑋𝑆𝑥)‘𝑘))
6337, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (𝐾𝑌) = (𝐹𝑋))
6463opeq2d 4846 . . . . . . . . . 10 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → ⟨𝑍, (𝐾𝑌)⟩ = ⟨𝑍, (𝐹𝑋)⟩)
6564, 44oveq12d 7407 . . . . . . . . 9 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6665adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦)) = (⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥)))
6751adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑌 = (𝑅𝑋))
68 simpl3 1194 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑦 = (𝑅𝑥))
6967, 68oveq12d 7407 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑌𝐿𝑦) = ((𝑅𝑋)𝐿(𝑅𝑥)))
70 simprr 772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑙 = ((𝑋𝑆𝑥)‘𝑘))
7169, 70fveq12d 6867 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)))
7238adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑅(𝐶 Func 𝐷)𝑆)
7340adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝐾(𝐷 Func 𝐸)𝐿)
7441adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) = ⟨𝐹, 𝐺⟩)
7549adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑋𝐴)
7642adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑥𝐴)
77 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥))
7812, 72, 73, 74, 75, 76, 46, 77cofu2a 49074 . . . . . . . . 9 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑅𝑋)𝐿(𝑅𝑥))‘((𝑋𝑆𝑥)‘𝑘)) = ((𝑋𝐺𝑥)‘𝑘))
7971, 78eqtrd 2765 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → ((𝑌𝐿𝑦)‘𝑙) = ((𝑋𝐺𝑥)‘𝑘))
80 eqidd 2731 . . . . . . . 8 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → 𝑀 = 𝑀)
8166, 79, 80oveq123d 7410 . . . . . . 7 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
8281eqeq2d 2741 . . . . . 6 ((((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) ∧ (𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥) ∧ 𝑙 = ((𝑋𝑆𝑥)‘𝑘))) → (𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ 𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8357, 62, 82reuxfr1dd 48785 . . . . 5 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8445, 83raleqbidv 3321 . . . 4 (((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) ∧ 𝑥𝐴𝑦 = (𝑅𝑥)) → (∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
8532, 34, 84ralxfrd2 5369 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀) ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
86 uptr2.b . . . 4 𝐵 = (Base‘𝐷)
87 eqid 2730 . . . 4 (comp‘𝐸) = (comp‘𝐸)
88 simprl 770 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑍 ∈ (Base‘𝐸))
8910adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌 = (𝑅𝑋))
9021adantr 480 . . . . . 6 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑋𝐴)
9131, 90ffvelcdmd 7059 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑅𝑋) ∈ 𝐵)
9289, 91eqeltrd 2829 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑌𝐵)
93 simprr 772 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9424adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑍(Hom ‘𝐸)(𝐾𝑌)) = (𝑍(Hom ‘𝐸)(𝐹𝑋)))
9593, 94eleqtrrd 2832 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑌)))
9686, 2, 47, 4, 87, 88, 39, 92, 95isup 49159 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀 ↔ ∀𝑦𝐵𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐾𝑦))∃!𝑙 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐿𝑦)‘𝑙)(⟨𝑍, (𝐾𝑌)⟩(comp‘𝐸)(𝐾𝑦))𝑀)))
9718, 19cofucla 49075 . . . . . . 7 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝑅, 𝑆⟩) ∈ (𝐶 Func 𝐸))
9820, 97eqeltrrd 2830 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
99 df-br 5110 . . . . . 6 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
10098, 99sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐸)𝐺)
101100adantr 480 . . . 4 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → 𝐹(𝐶 Func 𝐸)𝐺)
10212, 2, 46, 4, 87, 88, 101, 90, 93isup 49159 . . 3 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀 ↔ ∀𝑥𝐴𝑔 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐶)𝑥)𝑔 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀)))
10385, 96, 1023bitr4rd 312 . 2 ((𝜑 ∧ (𝑍 ∈ (Base‘𝐸) ∧ 𝑀 ∈ (𝑍(Hom ‘𝐸)(𝐹𝑋)))) → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
1046, 27, 103bibiad 839 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨𝐾, 𝐿⟩(𝐷 UP 𝐸)𝑍)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  cin 3915  cop 4597   class class class wbr 5109  wf 6509  ontowfo 6511  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822  func ccofu 17824   Full cful 17872   Faith cfth 17873   UP cup 49152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-full 17874  df-fth 17875  df-up 49153
This theorem is referenced by:  uptr2a  49201
  Copyright terms: Public domain W3C validator