Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspn Structured version   Visualization version   GIF version

Theorem elrgspn 33187
Description: Membership in the subring generated by the subset 𝐴. An element 𝑋 lies in that subring if and only if 𝑋 is a linear combination with integer coefficients of products of elements of 𝐴. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
Assertion
Ref Expression
elrgspn (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑓,𝑋,𝑔   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑁(𝑤,𝑓,𝑔)   𝑋(𝑤)

Proof of Theorem elrgspn
Dummy variables 𝑖 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . . . 6 𝐵 = (Base‘𝑅)
32a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . . . 5 (𝜑𝐴𝐵)
5 elrgspn.n . . . . . 6 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . . . 5 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2736 . . . . 5 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspncl 20571 . . . 4 (𝜑 → (𝑁𝐴) ∈ (SubRing‘𝑅))
92subrgss 20530 . . . 4 ((𝑁𝐴) ∈ (SubRing‘𝑅) → (𝑁𝐴) ⊆ 𝐵)
108, 9syl 17 . . 3 (𝜑 → (𝑁𝐴) ⊆ 𝐵)
1110sselda 3958 . 2 ((𝜑𝑋 ∈ (𝑁𝐴)) → 𝑋𝐵)
12 simpr 484 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
13 eqid 2735 . . . . . 6 (0g𝑅) = (0g𝑅)
141ringcmnd 20242 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1514adantr 480 . . . . . 6 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
162fvexi 6889 . . . . . . . . . 10 𝐵 ∈ V
1716a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
1817, 4ssexd 5294 . . . . . . . 8 (𝜑𝐴 ∈ V)
1918adantr 480 . . . . . . 7 ((𝜑𝑔𝐹) → 𝐴 ∈ V)
20 wrdexg 14540 . . . . . . 7 (𝐴 ∈ V → Word 𝐴 ∈ V)
2119, 20syl 17 . . . . . 6 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
22 elrgspn.x . . . . . . . 8 · = (.g𝑅)
231ringgrpd 20200 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
25 zex 12595 . . . . . . . . . . 11 ℤ ∈ V
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑔𝐹) → ℤ ∈ V)
27 breq1 5122 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
28 elrgspn.f . . . . . . . . . . . . . 14 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
2927, 28elrab2 3674 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3029biimpi 216 . . . . . . . . . . . 12 (𝑔𝐹 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3130simpld 494 . . . . . . . . . . 11 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
3231adantl 481 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
3321, 26, 32elmaprd 32603 . . . . . . . . 9 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
3433ffvelcdmda 7073 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
35 elrgspn.m . . . . . . . . . . . 12 𝑀 = (mulGrp‘𝑅)
3635ringmgp 20197 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
371, 36syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
39 sswrd 14538 . . . . . . . . . . . 12 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
404, 39syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐵)
4241sselda 3958 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
4335, 2mgpbas 20103 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
4443gsumwcl 18815 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
4538, 42, 44syl2anc 584 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
462, 22, 24, 34, 45mulgcld 19077 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
4746fmpttd 7104 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
4833feqmptd 6946 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 = (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)))
4930simprd 495 . . . . . . . . 9 (𝑔𝐹𝑔 finSupp 0)
5049adantl 481 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
5148, 50eqbrtrrd 5143 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)) finSupp 0)
522, 13, 22mulg0 19055 . . . . . . . 8 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
5352adantl 481 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
54 fvexd 6890 . . . . . . 7 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
5551, 53, 34, 45, 54fsuppssov1 9394 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
562, 13, 15, 21, 47, 55gsumcl 19894 . . . . 5 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5756adantr 480 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5812, 57eqeltrd 2834 . . 3 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
5958r19.29an 3144 . 2 ((𝜑 ∧ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
601adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝑅 ∈ Ring)
614adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝐴𝐵)
62 fveq1 6874 . . . . . . . . . . 11 ( = 𝑖 → (𝑤) = (𝑖𝑤))
6362oveq1d 7418 . . . . . . . . . 10 ( = 𝑖 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
6463mpteq2dv 5215 . . . . . . . . 9 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
65 fveq2 6875 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑖𝑤) = (𝑖𝑣))
66 oveq2 7411 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
6765, 66oveq12d 7421 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑖𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6867cbvmptv 5225 . . . . . . . . 9 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6964, 68eqtrdi 2786 . . . . . . . 8 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))
7069oveq2d 7419 . . . . . . 7 ( = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7170cbvmptv 5225 . . . . . 6 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7271rneqi 5917 . . . . 5 ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = ran (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
732, 35, 22, 5, 28, 60, 61, 72elrgspnlem4 33186 . . . 4 ((𝜑𝑋𝐵) → (𝑁𝐴) = ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))))
7473eleq2d 2820 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ 𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))))
75 fveq1 6874 . . . . . . . . 9 ( = 𝑔 → (𝑤) = (𝑔𝑤))
7675oveq1d 7418 . . . . . . . 8 ( = 𝑔 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
7776mpteq2dv 5215 . . . . . . 7 ( = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
7877oveq2d 7419 . . . . . 6 ( = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
7978cbvmptv 5225 . . . . 5 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
8079elrnmpt 5938 . . . 4 (𝑋𝐵 → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8180adantl 481 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8274, 81bitrd 279 . 2 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8311, 59, 82bibiad 839 1 (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  ran crn 5655  cfv 6530  (class class class)co 7403  m cmap 8838   finSupp cfsupp 9371  0cc0 11127  cz 12586  Word cword 14529  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  Grpcgrp 18914  .gcmg 19048  CMndccmn 19759  mulGrpcmgp 20098  Ringcrg 20191  SubRingcsubrg 20527  RingSpancrgspn 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-substr 14657  df-pfx 14687  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-subrng 20504  df-subrg 20528  df-rgspn 20569  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  elrgspnsubrunlem1  33188  elrgspnsubrun  33190
  Copyright terms: Public domain W3C validator