![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrgspn | Structured version Visualization version GIF version |
Description: Membership in the subring generated by the subset 𝐴. An element 𝑋 lies in that subring if and only if 𝑋 is a linear combination with integer coefficients of products of elements of 𝐴. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
Ref | Expression |
---|---|
elrgspn.b | ⊢ 𝐵 = (Base‘𝑅) |
elrgspn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
elrgspn.x | ⊢ · = (.g‘𝑅) |
elrgspn.n | ⊢ 𝑁 = (RingSpan‘𝑅) |
elrgspn.f | ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} |
elrgspn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
elrgspn.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
elrgspn.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elrgspn | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐴) ↔ ∃𝑔 ∈ 𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrgspn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | elrgspn.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
3 | elrgspn.x | . . . 4 ⊢ · = (.g‘𝑅) | |
4 | elrgspn.n | . . . 4 ⊢ 𝑁 = (RingSpan‘𝑅) | |
5 | elrgspn.f | . . . 4 ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} | |
6 | elrgspn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | elrgspn.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | fveq1 6905 | . . . . . . . . . 10 ⊢ (ℎ = 𝑖 → (ℎ‘𝑤) = (𝑖‘𝑤)) | |
9 | 8 | oveq1d 7445 | . . . . . . . . 9 ⊢ (ℎ = 𝑖 → ((ℎ‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑖‘𝑤) · (𝑀 Σg 𝑤))) |
10 | 9 | mpteq2dv 5249 | . . . . . . . 8 ⊢ (ℎ = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖‘𝑤) · (𝑀 Σg 𝑤)))) |
11 | fveq2 6906 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑣 → (𝑖‘𝑤) = (𝑖‘𝑣)) | |
12 | oveq2 7438 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣)) | |
13 | 11, 12 | oveq12d 7448 | . . . . . . . . 9 ⊢ (𝑤 = 𝑣 → ((𝑖‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑖‘𝑣) · (𝑀 Σg 𝑣))) |
14 | 13 | cbvmptv 5260 | . . . . . . . 8 ⊢ (𝑤 ∈ Word 𝐴 ↦ ((𝑖‘𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖‘𝑣) · (𝑀 Σg 𝑣))) |
15 | 10, 14 | eqtrdi 2790 | . . . . . . 7 ⊢ (ℎ = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖‘𝑣) · (𝑀 Σg 𝑣)))) |
16 | 15 | oveq2d 7446 | . . . . . 6 ⊢ (ℎ = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖‘𝑣) · (𝑀 Σg 𝑣))))) |
17 | 16 | cbvmptv 5260 | . . . . 5 ⊢ (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))) = (𝑖 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖‘𝑣) · (𝑀 Σg 𝑣))))) |
18 | 17 | rneqi 5950 | . . . 4 ⊢ ran (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))) = ran (𝑖 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖‘𝑣) · (𝑀 Σg 𝑣))))) |
19 | 1, 2, 3, 4, 5, 6, 7, 18 | elrgspnlem4 33234 | . . 3 ⊢ (𝜑 → (𝑁‘𝐴) = ran (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤)))))) |
20 | 19 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐴) ↔ 𝑋 ∈ ran (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))))) |
21 | elrgspn.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
22 | fveq1 6905 | . . . . . . . 8 ⊢ (ℎ = 𝑔 → (ℎ‘𝑤) = (𝑔‘𝑤)) | |
23 | 22 | oveq1d 7445 | . . . . . . 7 ⊢ (ℎ = 𝑔 → ((ℎ‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑔‘𝑤) · (𝑀 Σg 𝑤))) |
24 | 23 | mpteq2dv 5249 | . . . . . 6 ⊢ (ℎ = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))) |
25 | 24 | oveq2d 7446 | . . . . 5 ⊢ (ℎ = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) |
26 | 25 | cbvmptv 5260 | . . . 4 ⊢ (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))) = (𝑔 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) |
27 | 26 | elrnmpt 5971 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ ran (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔 ∈ 𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))))) |
28 | 21, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝑋 ∈ ran (ℎ ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((ℎ‘𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔 ∈ 𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))))) |
29 | 20, 28 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐴) ↔ ∃𝑔 ∈ 𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 {crab 3432 ⊆ wss 3962 class class class wbr 5147 ↦ cmpt 5230 ran crn 5689 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 finSupp cfsupp 9398 0cc0 11152 ℤcz 12610 Word cword 14548 Basecbs 17244 Σg cgsu 17486 .gcmg 19097 mulGrpcmgp 20151 Ringcrg 20250 RingSpancrgspn 20626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-word 14549 df-concat 14605 df-s1 14630 df-substr 14675 df-pfx 14705 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17487 df-gsum 17488 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-oppr 20350 df-subrng 20562 df-subrg 20586 df-rgspn 20627 df-cnfld 21382 df-zring 21475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |