Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspn Structured version   Visualization version   GIF version

Theorem elrgspn 33187
Description: Membership in the subring generated by the subset 𝐴. An element 𝑋 lies in that subring if and only if 𝑋 is a linear combination with integer coefficients of products of elements of 𝐴. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
Assertion
Ref Expression
elrgspn (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑓,𝑋,𝑔   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑁(𝑤,𝑓,𝑔)   𝑋(𝑤)

Proof of Theorem elrgspn
Dummy variables 𝑖 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . . . 6 𝐵 = (Base‘𝑅)
32a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . . . 5 (𝜑𝐴𝐵)
5 elrgspn.n . . . . . 6 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . . . 5 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2730 . . . . 5 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspncl 20498 . . . 4 (𝜑 → (𝑁𝐴) ∈ (SubRing‘𝑅))
92subrgss 20457 . . . 4 ((𝑁𝐴) ∈ (SubRing‘𝑅) → (𝑁𝐴) ⊆ 𝐵)
108, 9syl 17 . . 3 (𝜑 → (𝑁𝐴) ⊆ 𝐵)
1110sselda 3935 . 2 ((𝜑𝑋 ∈ (𝑁𝐴)) → 𝑋𝐵)
12 simpr 484 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
13 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
141ringcmnd 20169 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1514adantr 480 . . . . . 6 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
162fvexi 6836 . . . . . . . . . 10 𝐵 ∈ V
1716a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
1817, 4ssexd 5263 . . . . . . . 8 (𝜑𝐴 ∈ V)
1918adantr 480 . . . . . . 7 ((𝜑𝑔𝐹) → 𝐴 ∈ V)
20 wrdexg 14431 . . . . . . 7 (𝐴 ∈ V → Word 𝐴 ∈ V)
2119, 20syl 17 . . . . . 6 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
22 elrgspn.x . . . . . . . 8 · = (.g𝑅)
231ringgrpd 20127 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
25 zex 12480 . . . . . . . . . . 11 ℤ ∈ V
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑔𝐹) → ℤ ∈ V)
27 breq1 5095 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
28 elrgspn.f . . . . . . . . . . . . . 14 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
2927, 28elrab2 3651 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3029biimpi 216 . . . . . . . . . . . 12 (𝑔𝐹 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3130simpld 494 . . . . . . . . . . 11 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
3231adantl 481 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
3321, 26, 32elmaprd 32623 . . . . . . . . 9 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
3433ffvelcdmda 7018 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
35 elrgspn.m . . . . . . . . . . . 12 𝑀 = (mulGrp‘𝑅)
3635ringmgp 20124 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
371, 36syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
39 sswrd 14429 . . . . . . . . . . . 12 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
404, 39syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐵)
4241sselda 3935 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
4335, 2mgpbas 20030 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
4443gsumwcl 18713 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
4538, 42, 44syl2anc 584 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
462, 22, 24, 34, 45mulgcld 18975 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
4746fmpttd 7049 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
4833feqmptd 6891 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 = (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)))
4930simprd 495 . . . . . . . . 9 (𝑔𝐹𝑔 finSupp 0)
5049adantl 481 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
5148, 50eqbrtrrd 5116 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)) finSupp 0)
522, 13, 22mulg0 18953 . . . . . . . 8 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
5352adantl 481 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
54 fvexd 6837 . . . . . . 7 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
5551, 53, 34, 45, 54fsuppssov1 9274 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
562, 13, 15, 21, 47, 55gsumcl 19794 . . . . 5 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5756adantr 480 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5812, 57eqeltrd 2828 . . 3 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
5958r19.29an 3133 . 2 ((𝜑 ∧ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
601adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝑅 ∈ Ring)
614adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝐴𝐵)
62 fveq1 6821 . . . . . . . . . . 11 ( = 𝑖 → (𝑤) = (𝑖𝑤))
6362oveq1d 7364 . . . . . . . . . 10 ( = 𝑖 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
6463mpteq2dv 5186 . . . . . . . . 9 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
65 fveq2 6822 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑖𝑤) = (𝑖𝑣))
66 oveq2 7357 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
6765, 66oveq12d 7367 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑖𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6867cbvmptv 5196 . . . . . . . . 9 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6964, 68eqtrdi 2780 . . . . . . . 8 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))
7069oveq2d 7365 . . . . . . 7 ( = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7170cbvmptv 5196 . . . . . 6 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7271rneqi 5879 . . . . 5 ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = ran (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
732, 35, 22, 5, 28, 60, 61, 72elrgspnlem4 33186 . . . 4 ((𝜑𝑋𝐵) → (𝑁𝐴) = ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))))
7473eleq2d 2814 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ 𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))))
75 fveq1 6821 . . . . . . . . 9 ( = 𝑔 → (𝑤) = (𝑔𝑤))
7675oveq1d 7364 . . . . . . . 8 ( = 𝑔 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
7776mpteq2dv 5186 . . . . . . 7 ( = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
7877oveq2d 7365 . . . . . 6 ( = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
7978cbvmptv 5196 . . . . 5 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
8079elrnmpt 5900 . . . 4 (𝑋𝐵 → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8180adantl 481 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8274, 81bitrd 279 . 2 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8311, 59, 82bibiad 839 1 (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  wss 3903   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  m cmap 8753   finSupp cfsupp 9251  0cc0 11009  cz 12471  Word cword 14420  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Grpcgrp 18812  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  SubRingcsubrg 20454  RingSpancrgspn 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-subrng 20431  df-subrg 20455  df-rgspn 20496  df-cnfld 21262  df-zring 21354
This theorem is referenced by:  elrgspnsubrunlem1  33188  elrgspnsubrun  33190
  Copyright terms: Public domain W3C validator