Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspn Structured version   Visualization version   GIF version

Theorem elrgspn 33250
Description: Membership in the subring generated by the subset 𝐴. An element 𝑋 lies in that subring if and only if 𝑋 is a linear combination with integer coefficients of products of elements of 𝐴. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
Assertion
Ref Expression
elrgspn (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑓,𝑋,𝑔   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑁(𝑤,𝑓,𝑔)   𝑋(𝑤)

Proof of Theorem elrgspn
Dummy variables 𝑖 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . . . 6 𝐵 = (Base‘𝑅)
32a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . . . 5 (𝜑𝐴𝐵)
5 elrgspn.n . . . . . 6 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . . . 5 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2738 . . . . 5 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspncl 20613 . . . 4 (𝜑 → (𝑁𝐴) ∈ (SubRing‘𝑅))
92subrgss 20572 . . . 4 ((𝑁𝐴) ∈ (SubRing‘𝑅) → (𝑁𝐴) ⊆ 𝐵)
108, 9syl 17 . . 3 (𝜑 → (𝑁𝐴) ⊆ 𝐵)
1110sselda 3983 . 2 ((𝜑𝑋 ∈ (𝑁𝐴)) → 𝑋𝐵)
12 simpr 484 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
13 eqid 2737 . . . . . 6 (0g𝑅) = (0g𝑅)
141ringcmnd 20281 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1514adantr 480 . . . . . 6 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
162fvexi 6920 . . . . . . . . . 10 𝐵 ∈ V
1716a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
1817, 4ssexd 5324 . . . . . . . 8 (𝜑𝐴 ∈ V)
1918adantr 480 . . . . . . 7 ((𝜑𝑔𝐹) → 𝐴 ∈ V)
20 wrdexg 14562 . . . . . . 7 (𝐴 ∈ V → Word 𝐴 ∈ V)
2119, 20syl 17 . . . . . 6 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
22 elrgspn.x . . . . . . . 8 · = (.g𝑅)
231ringgrpd 20239 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
25 zex 12622 . . . . . . . . . . 11 ℤ ∈ V
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑔𝐹) → ℤ ∈ V)
27 breq1 5146 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
28 elrgspn.f . . . . . . . . . . . . . 14 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
2927, 28elrab2 3695 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3029biimpi 216 . . . . . . . . . . . 12 (𝑔𝐹 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
3130simpld 494 . . . . . . . . . . 11 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
3231adantl 481 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
3321, 26, 32elmaprd 32689 . . . . . . . . 9 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
3433ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
35 elrgspn.m . . . . . . . . . . . 12 𝑀 = (mulGrp‘𝑅)
3635ringmgp 20236 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
371, 36syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
39 sswrd 14560 . . . . . . . . . . . 12 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
404, 39syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐵)
4241sselda 3983 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
4335, 2mgpbas 20142 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
4443gsumwcl 18852 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
4538, 42, 44syl2anc 584 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
462, 22, 24, 34, 45mulgcld 19114 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
4746fmpttd 7135 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
4833feqmptd 6977 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 = (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)))
4930simprd 495 . . . . . . . . 9 (𝑔𝐹𝑔 finSupp 0)
5049adantl 481 . . . . . . . 8 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
5148, 50eqbrtrrd 5167 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (𝑔𝑤)) finSupp 0)
522, 13, 22mulg0 19092 . . . . . . . 8 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
5352adantl 481 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
54 fvexd 6921 . . . . . . 7 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
5551, 53, 34, 45, 54fsuppssov1 9424 . . . . . 6 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
562, 13, 15, 21, 47, 55gsumcl 19933 . . . . 5 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5756adantr 480 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5812, 57eqeltrd 2841 . . 3 (((𝜑𝑔𝐹) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
5958r19.29an 3158 . 2 ((𝜑 ∧ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑋𝐵)
601adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝑅 ∈ Ring)
614adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝐴𝐵)
62 fveq1 6905 . . . . . . . . . . 11 ( = 𝑖 → (𝑤) = (𝑖𝑤))
6362oveq1d 7446 . . . . . . . . . 10 ( = 𝑖 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
6463mpteq2dv 5244 . . . . . . . . 9 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
65 fveq2 6906 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑖𝑤) = (𝑖𝑣))
66 oveq2 7439 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
6765, 66oveq12d 7449 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑖𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6867cbvmptv 5255 . . . . . . . . 9 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))
6964, 68eqtrdi 2793 . . . . . . . 8 ( = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))
7069oveq2d 7447 . . . . . . 7 ( = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7170cbvmptv 5255 . . . . . 6 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
7271rneqi 5948 . . . . 5 ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = ran (𝑖𝐹 ↦ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))))
732, 35, 22, 5, 28, 60, 61, 72elrgspnlem4 33249 . . . 4 ((𝜑𝑋𝐵) → (𝑁𝐴) = ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))))
7473eleq2d 2827 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ 𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))))
75 fveq1 6905 . . . . . . . . 9 ( = 𝑔 → (𝑤) = (𝑔𝑤))
7675oveq1d 7446 . . . . . . . 8 ( = 𝑔 → ((𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
7776mpteq2dv 5244 . . . . . . 7 ( = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
7877oveq2d 7447 . . . . . 6 ( = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
7978cbvmptv 5255 . . . . 5 (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
8079elrnmpt 5969 . . . 4 (𝑋𝐵 → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8180adantl 481 . . 3 ((𝜑𝑋𝐵) → (𝑋 ∈ ran (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8274, 81bitrd 279 . 2 ((𝜑𝑋𝐵) → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
8311, 59, 82bibiad 840 1 (𝜑 → (𝑋 ∈ (𝑁𝐴) ↔ ∃𝑔𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  m cmap 8866   finSupp cfsupp 9401  0cc0 11155  cz 12613  Word cword 14552  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  Grpcgrp 18951  .gcmg 19085  CMndccmn 19798  mulGrpcmgp 20137  Ringcrg 20230  SubRingcsubrg 20569  RingSpancrgspn 20610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-subrng 20546  df-subrg 20570  df-rgspn 20611  df-cnfld 21365  df-zring 21458
This theorem is referenced by:  elrgspnsubrunlem1  33251  elrgspnsubrun  33253
  Copyright terms: Public domain W3C validator