| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptr | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptr.y | ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) |
| uptr.r | ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| uptr.k | ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| uptr.b | ⊢ 𝐵 = (Base‘𝐷) |
| uptr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uptr.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| uptr.n | ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| uptr.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| uptr.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| Ref | Expression |
|---|---|
| uptr | ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) | |
| 3 | uptr.y | . . . . 5 ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (𝑅‘𝑋) = 𝑌) |
| 5 | uptr.r | . . . . 5 ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 7 | uptr.k | . . . . 5 ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 9 | uptr.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 10 | uptr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋 ∈ 𝐵) |
| 12 | uptr.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 14 | uptr.n | . . . . 5 ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 16 | uptr.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 17 | uptr.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 19 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 20 | 2, 19 | uprcl4 49177 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶)) |
| 21 | 4, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20 | uptrlem3 49198 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 22 | 2, 21 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) |
| 23 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑅‘𝑋) = 𝑌) |
| 24 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 25 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 26 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ 𝐵) |
| 27 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 28 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 29 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 30 | 1, 19 | uprcl4 49177 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍 ∈ (Base‘𝐶)) |
| 31 | 23, 24, 25, 9, 26, 27, 28, 16, 29, 19, 30 | uptrlem3 49198 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 32 | 1, 22, 31 | bibiad 839 | 1 ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Func cfunc 17779 ∘func ccofu 17781 Full cful 17829 Faith cfth 17830 UP cup 49159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17592 df-cid 17593 df-func 17783 df-cofu 17785 df-full 17831 df-fth 17832 df-up 49160 |
| This theorem is referenced by: uptri 49200 uptra 49201 lmddu 49653 |
| Copyright terms: Public domain | W3C validator |