| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptr | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptr.y | ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) |
| uptr.r | ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| uptr.k | ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| uptr.b | ⊢ 𝐵 = (Base‘𝐷) |
| uptr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uptr.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| uptr.n | ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| uptr.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| uptr.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| Ref | Expression |
|---|---|
| uptr | ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) | |
| 3 | uptr.y | . . . . 5 ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (𝑅‘𝑋) = 𝑌) |
| 5 | uptr.r | . . . . 5 ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 7 | uptr.k | . . . . 5 ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 9 | uptr.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 10 | uptr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋 ∈ 𝐵) |
| 12 | uptr.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 14 | uptr.n | . . . . 5 ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 16 | uptr.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 17 | uptr.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 19 | eqid 2731 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 20 | 2, 19 | uprcl4 49222 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶)) |
| 21 | 4, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20 | uptrlem3 49243 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 22 | 2, 21 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) |
| 23 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑅‘𝑋) = 𝑌) |
| 24 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 25 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 26 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ 𝐵) |
| 27 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 28 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 29 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 30 | 1, 19 | uprcl4 49222 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍 ∈ (Base‘𝐶)) |
| 31 | 23, 24, 25, 9, 26, 27, 28, 16, 29, 19, 30 | uptrlem3 49243 | . 2 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 32 | 1, 22, 31 | bibiad 839 | 1 ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 Func cfunc 17758 ∘func ccofu 17760 Full cful 17808 Faith cfth 17809 UP cup 49204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17571 df-cid 17572 df-func 17762 df-cofu 17764 df-full 17810 df-fth 17811 df-up 49205 |
| This theorem is referenced by: uptri 49245 uptra 49246 lmddu 49698 |
| Copyright terms: Public domain | W3C validator |