Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrdifh Structured version   Visualization version   GIF version

Theorem xrdifh 31003
Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
Hypothesis
Ref Expression
xrdifh.1 𝐴 ∈ ℝ*
Assertion
Ref Expression
xrdifh (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)

Proof of Theorem xrdifh
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 biortn 934 . . . . . 6 (𝑥 ∈ ℝ* → ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
2 pnfge 12795 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
32notnotd 144 . . . . . . . 8 (𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞)
4 biorf 933 . . . . . . . 8 (¬ ¬ 𝑥 ≤ +∞ → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
53, 4syl 17 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
6 orcom 866 . . . . . . 7 ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥))
75, 6bitr4di 288 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
8 xrdifh.1 . . . . . . . . . 10 𝐴 ∈ ℝ*
9 pnfxr 10960 . . . . . . . . . 10 +∞ ∈ ℝ*
10 elicc1 13052 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞)))
118, 9, 10mp2an 688 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
1211notbii 319 . . . . . . . 8 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
13 3ianor 1105 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))
14 3orass 1088 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1512, 13, 143bitri 296 . . . . . . 7 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1615a1i 11 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
171, 7, 163bitr4rd 311 . . . . 5 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ 𝐴𝑥))
18 xrltnle 10973 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
198, 18mpan2 687 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2017, 19bitr4d 281 . . . 4 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ 𝑥 < 𝐴))
2120pm5.32i 574 . . 3 ((𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
22 eldif 3893 . . 3 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)))
23 3anass 1093 . . . 4 ((𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
24 mnfxr 10963 . . . . 5 -∞ ∈ ℝ*
25 elico1 13051 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴)))
2624, 8, 25mp2an 688 . . . 4 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴))
27 mnfle 12799 . . . . . 6 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
2827biantrurd 532 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥𝑥 < 𝐴)))
2928pm5.32i 574 . . . 4 ((𝑥 ∈ ℝ*𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
3023, 26, 293bitr4i 302 . . 3 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
3121, 22, 303bitr4i 302 . 2 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ 𝑥 ∈ (-∞[,)𝐴))
3231eqriv 2735 1 (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  cdif 3880   class class class wbr 5070  (class class class)co 7255  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014  df-icc 13015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator