Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrdifh Structured version   Visualization version   GIF version

Theorem xrdifh 30012
Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
Hypothesis
Ref Expression
xrdifh.1 𝐴 ∈ ℝ*
Assertion
Ref Expression
xrdifh (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)

Proof of Theorem xrdifh
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 biortn 961 . . . . . 6 (𝑥 ∈ ℝ* → ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
2 pnfge 12169 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
32notnotd 140 . . . . . . . 8 (𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞)
4 biorf 960 . . . . . . . 8 (¬ ¬ 𝑥 ≤ +∞ → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
53, 4syl 17 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
6 orcom 896 . . . . . . 7 ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥))
75, 6syl6bbr 280 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
8 xrdifh.1 . . . . . . . . . 10 𝐴 ∈ ℝ*
9 pnfxr 10350 . . . . . . . . . 10 +∞ ∈ ℝ*
10 elicc1 12426 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞)))
118, 9, 10mp2an 683 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
1211notbii 311 . . . . . . . 8 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
13 3ianor 1132 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))
14 3orass 1110 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1512, 13, 143bitri 288 . . . . . . 7 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1615a1i 11 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
171, 7, 163bitr4rd 303 . . . . 5 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ 𝐴𝑥))
18 xrltnle 10363 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
198, 18mpan2 682 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2017, 19bitr4d 273 . . . 4 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ 𝑥 < 𝐴))
2120pm5.32i 570 . . 3 ((𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
22 eldif 3744 . . 3 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)))
23 3anass 1116 . . . 4 ((𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
24 mnfxr 10354 . . . . 5 -∞ ∈ ℝ*
25 elico1 12425 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴)))
2624, 8, 25mp2an 683 . . . 4 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴))
27 mnfle 12174 . . . . . 6 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
2827biantrurd 528 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥𝑥 < 𝐴)))
2928pm5.32i 570 . . . 4 ((𝑥 ∈ ℝ*𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
3023, 26, 293bitr4i 294 . . 3 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
3121, 22, 303bitr4i 294 . 2 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ 𝑥 ∈ (-∞[,)𝐴))
3231eqriv 2762 1 (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  cdif 3731   class class class wbr 4811  (class class class)co 6846  +∞cpnf 10329  -∞cmnf 10330  *cxr 10331   < clt 10332  cle 10333  [,)cico 12384  [,]cicc 12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-ico 12388  df-icc 12389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator