Step | Hyp | Ref
| Expression |
1 | | biortn 934 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ ((¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨
(¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞)))) |
2 | | pnfge 12795 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ*
→ 𝑥 ≤
+∞) |
3 | 2 | notnotd 144 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ*
→ ¬ ¬ 𝑥 ≤
+∞) |
4 | | biorf 933 |
. . . . . . . 8
⊢ (¬
¬ 𝑥 ≤ +∞
→ (¬ 𝐴 ≤ 𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥))) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝐴 ≤ 𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥))) |
6 | | orcom 866 |
. . . . . . 7
⊢ ((¬
𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥)) |
7 | 5, 6 | bitr4di 288 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝐴 ≤ 𝑥 ↔ (¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞))) |
8 | | xrdifh.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈
ℝ* |
9 | | pnfxr 10960 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
10 | | elicc1 13052 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞))) |
11 | 8, 9, 10 | mp2an 688 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
12 | 11 | notbii 319 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*
∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
13 | | 3ianor 1105 |
. . . . . . . 8
⊢ (¬
(𝑥 ∈
ℝ* ∧ 𝐴
≤ 𝑥 ∧ 𝑥 ≤ +∞) ↔ (¬
𝑥 ∈
ℝ* ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞)) |
14 | | 3orass 1088 |
. . . . . . . 8
⊢ ((¬
𝑥 ∈
ℝ* ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨
(¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞))) |
15 | 12, 13, 14 | 3bitri 296 |
. . . . . . 7
⊢ (¬
𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨
(¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞))) |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝑥 ∈
(𝐴[,]+∞) ↔
(¬ 𝑥 ∈
ℝ* ∨ (¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞)))) |
17 | 1, 7, 16 | 3bitr4rd 311 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝑥 ∈
(𝐴[,]+∞) ↔ ¬
𝐴 ≤ 𝑥)) |
18 | | xrltnle 10973 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑥)) |
19 | 8, 18 | mpan2 687 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ (𝑥 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑥)) |
20 | 17, 19 | bitr4d 281 |
. . . 4
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝑥 ∈
(𝐴[,]+∞) ↔ 𝑥 < 𝐴)) |
21 | 20 | pm5.32i 574 |
. . 3
⊢ ((𝑥 ∈ ℝ*
∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*
∧ 𝑥 < 𝐴)) |
22 | | eldif 3893 |
. . 3
⊢ (𝑥 ∈ (ℝ*
∖ (𝐴[,]+∞))
↔ (𝑥 ∈
ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞))) |
23 | | 3anass 1093 |
. . . 4
⊢ ((𝑥 ∈ ℝ*
∧ -∞ ≤ 𝑥 ∧
𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞
≤ 𝑥 ∧ 𝑥 < 𝐴))) |
24 | | mnfxr 10963 |
. . . . 5
⊢ -∞
∈ ℝ* |
25 | | elico1 13051 |
. . . . 5
⊢
((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞
≤ 𝑥 ∧ 𝑥 < 𝐴))) |
26 | 24, 8, 25 | mp2an 688 |
. . . 4
⊢ (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞
≤ 𝑥 ∧ 𝑥 < 𝐴)) |
27 | | mnfle 12799 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ -∞ ≤ 𝑥) |
28 | 27 | biantrurd 532 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥 ∧ 𝑥 < 𝐴))) |
29 | 28 | pm5.32i 574 |
. . . 4
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞
≤ 𝑥 ∧ 𝑥 < 𝐴))) |
30 | 23, 26, 29 | 3bitr4i 302 |
. . 3
⊢ (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 < 𝐴)) |
31 | 21, 22, 30 | 3bitr4i 302 |
. 2
⊢ (𝑥 ∈ (ℝ*
∖ (𝐴[,]+∞))
↔ 𝑥 ∈
(-∞[,)𝐴)) |
32 | 31 | eqriv 2735 |
1
⊢
(ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴) |