Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrdifh Structured version   Visualization version   GIF version

Theorem xrdifh 31737
Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
Hypothesis
Ref Expression
xrdifh.1 𝐴 ∈ ℝ*
Assertion
Ref Expression
xrdifh (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)

Proof of Theorem xrdifh
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 biortn 937 . . . . . 6 (𝑥 ∈ ℝ* → ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
2 pnfge 13059 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
32notnotd 144 . . . . . . . 8 (𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞)
4 biorf 936 . . . . . . . 8 (¬ ¬ 𝑥 ≤ +∞ → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
53, 4syl 17 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
6 orcom 869 . . . . . . 7 ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥))
75, 6bitr4di 289 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
8 xrdifh.1 . . . . . . . . . 10 𝐴 ∈ ℝ*
9 pnfxr 11217 . . . . . . . . . 10 +∞ ∈ ℝ*
10 elicc1 13317 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞)))
118, 9, 10mp2an 691 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
1211notbii 320 . . . . . . . 8 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
13 3ianor 1108 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))
14 3orass 1091 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1512, 13, 143bitri 297 . . . . . . 7 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1615a1i 11 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
171, 7, 163bitr4rd 312 . . . . 5 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ 𝐴𝑥))
18 xrltnle 11230 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
198, 18mpan2 690 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2017, 19bitr4d 282 . . . 4 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ 𝑥 < 𝐴))
2120pm5.32i 576 . . 3 ((𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
22 eldif 3924 . . 3 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)))
23 3anass 1096 . . . 4 ((𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
24 mnfxr 11220 . . . . 5 -∞ ∈ ℝ*
25 elico1 13316 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴)))
2624, 8, 25mp2an 691 . . . 4 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴))
27 mnfle 13063 . . . . . 6 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
2827biantrurd 534 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥𝑥 < 𝐴)))
2928pm5.32i 576 . . . 4 ((𝑥 ∈ ℝ*𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
3023, 26, 293bitr4i 303 . . 3 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
3121, 22, 303bitr4i 303 . 2 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ 𝑥 ∈ (-∞[,)𝐴))
3231eqriv 2730 1 (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  cdif 3911   class class class wbr 5109  (class class class)co 7361  +∞cpnf 11194  -∞cmnf 11195  *cxr 11196   < clt 11197  cle 11198  [,)cico 13275  [,]cicc 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-ico 13279  df-icc 13280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator