Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrdifh Structured version   Visualization version   GIF version

Theorem xrdifh 32785
Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
Hypothesis
Ref Expression
xrdifh.1 𝐴 ∈ ℝ*
Assertion
Ref Expression
xrdifh (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)

Proof of Theorem xrdifh
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 biortn 936 . . . . . 6 (𝑥 ∈ ℝ* → ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
2 pnfge 13193 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
32notnotd 144 . . . . . . . 8 (𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞)
4 biorf 935 . . . . . . . 8 (¬ ¬ 𝑥 ≤ +∞ → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
53, 4syl 17 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
6 orcom 869 . . . . . . 7 ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥))
75, 6bitr4di 289 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
8 xrdifh.1 . . . . . . . . . 10 𝐴 ∈ ℝ*
9 pnfxr 11344 . . . . . . . . . 10 +∞ ∈ ℝ*
10 elicc1 13451 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞)))
118, 9, 10mp2an 691 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
1211notbii 320 . . . . . . . 8 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
13 3ianor 1107 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))
14 3orass 1090 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1512, 13, 143bitri 297 . . . . . . 7 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1615a1i 11 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
171, 7, 163bitr4rd 312 . . . . 5 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ 𝐴𝑥))
18 xrltnle 11357 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
198, 18mpan2 690 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2017, 19bitr4d 282 . . . 4 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ 𝑥 < 𝐴))
2120pm5.32i 574 . . 3 ((𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
22 eldif 3986 . . 3 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)))
23 3anass 1095 . . . 4 ((𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
24 mnfxr 11347 . . . . 5 -∞ ∈ ℝ*
25 elico1 13450 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴)))
2624, 8, 25mp2an 691 . . . 4 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴))
27 mnfle 13197 . . . . . 6 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
2827biantrurd 532 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥𝑥 < 𝐴)))
2928pm5.32i 574 . . . 4 ((𝑥 ∈ ℝ*𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
3023, 26, 293bitr4i 303 . . 3 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
3121, 22, 303bitr4i 303 . 2 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ 𝑥 ∈ (-∞[,)𝐴))
3231eqriv 2737 1 (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  cdif 3973   class class class wbr 5166  (class class class)co 7448  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413  df-icc 13414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator