Proof of Theorem 4atlem3a
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
2 | | simpl2l 1225 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
3 | | simpl2r 1226 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
4 | | simpl12 1248 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
5 | 2, 3, 4 | 3jca 1127 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) |
6 | | simpl3 1192 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
7 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
8 | | 4at.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
9 | | 4at.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
10 | | 4at.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 8, 9, 10 | 4atlem3 37619 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
12 | 1, 5, 6, 7, 11 | syl31anc 1372 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
13 | | simpl11 1247 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
14 | 13 | hllatd 37387 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
15 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | 15, 10 | atbase 37312 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
17 | 4, 16 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) |
18 | | simpl3l 1227 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑈 ∈ 𝐴) |
19 | | simpl3r 1228 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
20 | 15, 9, 10 | hlatjcl 37390 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
21 | 13, 18, 19, 20 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
22 | 15, 8, 9 | latlej1 18177 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ (𝑈 ∨ 𝑉))) |
23 | 14, 17, 21, 22 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ≤ (𝑃 ∨ (𝑈 ∨ 𝑉))) |
24 | 15, 10 | atbase 37312 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
25 | 18, 24 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑈 ∈ (Base‘𝐾)) |
26 | 15, 10 | atbase 37312 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
27 | 19, 26 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ (Base‘𝐾)) |
28 | 15, 9 | latjass 18212 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑈) ∨ 𝑉) = (𝑃 ∨ (𝑈 ∨ 𝑉))) |
29 | 14, 17, 25, 27, 28 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑈) ∨ 𝑉) = (𝑃 ∨ (𝑈 ∨ 𝑉))) |
30 | 23, 29 | breqtrrd 5107 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)) |
31 | | biortn 935 |
. . . . 5
⊢ (𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ↔ (¬ 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ↔ (¬ 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
33 | 32 | orbi1d 914 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉))) ↔ ((¬ 𝑃 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉))))) |
34 | 12, 33 | mpbird 256 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
35 | | 3orass 1089 |
. 2
⊢ ((¬
𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)) ↔ (¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉)))) |
36 | 34, 35 | sylibr 233 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑈) ∨ 𝑉))) |