![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine1lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrneineine1lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
5 | ntrnei.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 5 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
7 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 38898 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
9 | 8 | notbid 307 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ¬ 𝑠 ∈ (𝑁‘𝑋))) |
10 | 9 | rexbidva 3196 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋))) |
11 | 1, 2, 3 | ntrneinex 38894 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
12 | elmapi 8030 | . . . . . . 7 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
14 | 13, 5 | ffvelrnd 6503 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
15 | 14 | elpwid 4307 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
16 | biortn 897 | . . . 4 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) |
18 | df-rex 3066 | . . . 4 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
19 | nss 3810 | . . . 4 ⊢ (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
20 | 18, 19 | bitr4i 267 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) |
21 | df-ne 2943 | . . . 4 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ ¬ (𝑁‘𝑋) = 𝒫 𝐵) | |
22 | ianor 910 | . . . . 5 ⊢ (¬ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
23 | eqss 3765 | . . . . 5 ⊢ ((𝑁‘𝑋) = 𝒫 𝐵 ↔ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
24 | 22, 23 | xchnxbir 322 | . . . 4 ⊢ (¬ (𝑁‘𝑋) = 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
25 | 21, 24 | bitri 264 | . . 3 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
26 | 17, 20, 25 | 3bitr4g 303 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
27 | 10, 26 | bitrd 268 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 = wceq 1630 ∃wex 1851 ∈ wcel 2144 ≠ wne 2942 ∃wrex 3061 {crab 3064 Vcvv 3349 ⊆ wss 3721 𝒫 cpw 4295 class class class wbr 4784 ↦ cmpt 4861 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 ↑𝑚 cmap 8008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-map 8010 |
This theorem is referenced by: ntrneineine1 38905 |
Copyright terms: Public domain | W3C validator |