![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine1lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrneineine1lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
5 | ntrnei.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
7 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 39867 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
9 | 8 | notbid 319 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ¬ 𝑠 ∈ (𝑁‘𝑋))) |
10 | 9 | rexbidva 3256 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋))) |
11 | 1, 2, 3 | ntrneinex 39863 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
12 | elmapi 8269 | . . . . . . 7 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
14 | 13, 5 | ffvelrnd 6708 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
15 | 14 | elpwid 4459 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
16 | biortn 930 | . . . 4 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) |
18 | df-rex 3109 | . . . 4 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
19 | nss 3945 | . . . 4 ⊢ (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
20 | 18, 19 | bitr4i 279 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) |
21 | df-ne 2983 | . . . 4 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ ¬ (𝑁‘𝑋) = 𝒫 𝐵) | |
22 | ianor 974 | . . . . 5 ⊢ (¬ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
23 | eqss 3899 | . . . . 5 ⊢ ((𝑁‘𝑋) = 𝒫 𝐵 ↔ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
24 | 22, 23 | xchnxbir 334 | . . . 4 ⊢ (¬ (𝑁‘𝑋) = 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
25 | 21, 24 | bitri 276 | . . 3 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
26 | 17, 20, 25 | 3bitr4g 315 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
27 | 10, 26 | bitrd 280 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1520 ∃wex 1759 ∈ wcel 2079 ≠ wne 2982 ∃wrex 3104 {crab 3107 Vcvv 3432 ⊆ wss 3854 𝒫 cpw 4447 class class class wbr 4956 ↦ cmpt 5035 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 ∈ cmpo 7009 ↑𝑚 cmap 8247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-1st 7536 df-2nd 7537 df-map 8249 |
This theorem is referenced by: ntrneineine1 39874 |
Copyright terms: Public domain | W3C validator |