| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine1lem | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ntrneineine1lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
| 5 | ntrnei.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 8 | 1, 2, 4, 6, 7 | ntrneiel 44105 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
| 9 | 8 | notbid 318 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ¬ 𝑠 ∈ (𝑁‘𝑋))) |
| 10 | 9 | rexbidva 3162 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋))) |
| 11 | 1, 2, 3 | ntrneinex 44101 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 12 | elmapi 8863 | . . . . . . 7 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
| 14 | 13, 5 | ffvelcdmd 7075 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
| 15 | 14 | elpwid 4584 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
| 16 | biortn 937 | . . . 4 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)))) |
| 18 | df-rex 3061 | . . . 4 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
| 19 | nss 4023 | . . . 4 ⊢ (¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁‘𝑋))) | |
| 20 | 18, 19 | bitr4i 278 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) |
| 21 | df-ne 2933 | . . . 4 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ ¬ (𝑁‘𝑋) = 𝒫 𝐵) | |
| 22 | ianor 983 | . . . . 5 ⊢ (¬ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋)) ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
| 23 | eqss 3974 | . . . . 5 ⊢ ((𝑁‘𝑋) = 𝒫 𝐵 ↔ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) | |
| 24 | 22, 23 | xchnxbir 333 | . . . 4 ⊢ (¬ (𝑁‘𝑋) = 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
| 25 | 21, 24 | bitri 275 | . . 3 ⊢ ((𝑁‘𝑋) ≠ 𝒫 𝐵 ↔ (¬ (𝑁‘𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁‘𝑋))) |
| 26 | 17, 20, 25 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
| 27 | 10, 26 | bitrd 279 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: ntrneineine1 44112 |
| Copyright terms: Public domain | W3C validator |