Proof of Theorem 4atlem3b
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 2 | | simp21 1207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
| 3 | | simp22 1208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
| 4 | 2, 3 | jca 511 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
| 5 | | simp13 1206 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
| 6 | | simp23 1209 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
| 7 | 5, 6 | jca 511 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
| 8 | | simp3 1138 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
| 9 | | 4at.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 10 | | 4at.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 11 | | 4at.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 9, 10, 11 | 4atlem3a 39621 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉))) |
| 13 | 1, 4, 7, 8, 12 | syl31anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉))) |
| 14 | | 3orass 1089 |
. . 3
⊢ ((¬
𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)))) |
| 15 | 13, 14 | sylib 218 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)))) |
| 16 | | simp11 1204 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
| 17 | 16 | hllatd 39387 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
| 18 | | simp12 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
| 19 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 20 | 19, 10, 11 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 21 | 16, 18, 6, 20 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 22 | 19, 11 | atbase 39312 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 23 | 5, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ (Base‘𝐾)) |
| 24 | 19, 9, 10 | latlej2 18464 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑄)) |
| 25 | 17, 21, 23, 24 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ≤ ((𝑃 ∨ 𝑉) ∨ 𝑄)) |
| 26 | 10, 11 | hlatj32 39395 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑉) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑉)) |
| 27 | 16, 18, 6, 5, 26 | syl13anc 1374 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑉) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑉)) |
| 28 | 25, 27 | breqtrd 5150 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)) |
| 29 | | biortn 937 |
. . 3
⊢ (𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) → ((¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉))))) |
| 30 | 28, 29 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (¬ 𝑄 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉))))) |
| 31 | 15, 30 | mpbird 257 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑉))) |