Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3b Structured version   Visualization version   GIF version

Theorem 4atlem3b 38982
Description: Lemma for 4at 38997. Break inequality into 2 cases. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l ≀ = (leβ€˜πΎ)
4at.j ∨ = (joinβ€˜πΎ)
4at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
4atlem3b (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))

Proof of Theorem 4atlem3b
StepHypRef Expression
1 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
2 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑅 ∈ 𝐴)
3 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑆 ∈ 𝐴)
42, 3jca 511 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴))
5 simp13 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ∈ 𝐴)
6 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑉 ∈ 𝐴)
75, 6jca 511 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴))
8 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
9 4at.l . . . . 5 ≀ = (leβ€˜πΎ)
10 4at.j . . . . 5 ∨ = (joinβ€˜πΎ)
11 4at.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
129, 10, 114atlem3a 38981 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))
131, 4, 7, 8, 12syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))
14 3orass 1087 . . 3 ((Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉))))
1513, 14sylib 217 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉))))
16 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝐾 ∈ HL)
1716hllatd 38747 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝐾 ∈ Lat)
18 simp12 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑃 ∈ 𝐴)
19 eqid 2726 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2019, 10, 11hlatjcl 38750 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
2116, 18, 6, 20syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
2219, 11atbase 38672 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
235, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2419, 9, 10latlej2 18414 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ 𝑄 ≀ ((𝑃 ∨ 𝑉) ∨ 𝑄))
2517, 21, 23, 24syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ≀ ((𝑃 ∨ 𝑉) ∨ 𝑄))
2610, 11hlatj32 38755 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑉) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑉))
2716, 18, 6, 5, 26syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑃 ∨ 𝑉) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑉))
2825, 27breqtrd 5167 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉))
29 biortn 934 . . 3 (𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) β†’ ((Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))))
3028, 29syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)) ↔ (Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))))
3115, 30mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  Latclat 18396  Atomscatm 38646  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884
This theorem is referenced by:  4atlem10  38990
  Copyright terms: Public domain W3C validator