![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abex | Structured version Visualization version GIF version |
Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-abex | ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3495 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) | |
2 | eqabb 2881 | . . 3 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑦 𝑦 = {𝑥 ∣ 𝜑} ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
4 | 1, 3 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2108 {cab 2714 Vcvv 3481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |