| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abex | Structured version Visualization version GIF version | ||
| Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-abex | ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3477 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) | |
| 2 | eqabb 2873 | . . 3 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑦 𝑦 = {𝑥 ∣ 𝜑} ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |