Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abex Structured version   Visualization version   GIF version

Theorem bj-abex 36998
Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abex ({𝑥𝜑} ∈ V ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-abex
StepHypRef Expression
1 isset 3502 . 2 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
2 eqabb 2884 . . 3 (𝑦 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝑦𝜑))
32exbii 1846 . 2 (∃𝑦 𝑦 = {𝑥𝜑} ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
41, 3bitri 275 1 ({𝑥𝜑} ∈ V ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator