| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abex | Structured version Visualization version GIF version | ||
| Description: Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-abex | ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3448 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) | |
| 2 | eqabb 2868 | . . 3 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
| 3 | 2 | exbii 1849 | . 2 ⊢ (∃𝑦 𝑦 = {𝑥 ∣ 𝜑} ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2110 {cab 2708 Vcvv 3434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |