| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sscon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for relative subclasses. Relative and generalized version of ssconb 4091, which it can shorten, as well as conss2 44599. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssconb 4091 nor conss2 44599. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sscon | ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ (𝐵 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4158 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | ineq1i 4165 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ((𝐵 ∩ 𝐴) ∩ 𝑉) |
| 3 | 2 | eqeq1i 2738 | . 2 ⊢ (((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅ ↔ ((𝐵 ∩ 𝐴) ∩ 𝑉) = ∅) |
| 4 | bj-disj2r 37145 | . 2 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) | |
| 5 | bj-disj2r 37145 | . 2 ⊢ ((𝐵 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐴) ↔ ((𝐵 ∩ 𝐴) ∩ 𝑉) = ∅) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ (𝐵 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |