Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sscon Structured version   Visualization version   GIF version

Theorem bj-sscon 36993
Description: Contraposition law for relative subclasses. Relative and generalized version of ssconb 4117, which it can shorten, as well as conss2 44415. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssconb 4117 nor conss2 44415. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sscon ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ (𝐵𝑉) ⊆ (𝑉𝐴))

Proof of Theorem bj-sscon
StepHypRef Expression
1 incom 4184 . . . 4 (𝐴𝐵) = (𝐵𝐴)
21ineq1i 4191 . . 3 ((𝐴𝐵) ∩ 𝑉) = ((𝐵𝐴) ∩ 𝑉)
32eqeq1i 2740 . 2 (((𝐴𝐵) ∩ 𝑉) = ∅ ↔ ((𝐵𝐴) ∩ 𝑉) = ∅)
4 bj-disj2r 36992 . 2 ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ ((𝐴𝐵) ∩ 𝑉) = ∅)
5 bj-disj2r 36992 . 2 ((𝐵𝑉) ⊆ (𝑉𝐴) ↔ ((𝐵𝐴) ∩ 𝑉) = ∅)
63, 4, 53bitr4i 303 1 ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ (𝐵𝑉) ⊆ (𝑉𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cdif 3923  cin 3925  wss 3926  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943  df-nul 4309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator