![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem3 | Structured version Visualization version GIF version |
Description: Lemma for currysetALT 36933. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
currysetlem2.def | ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} |
Ref | Expression |
---|---|
currysetlem3 | ⊢ ¬ 𝑋 ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | currysetlem2.def | . . . . 5 ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
2 | 1 | currysetlem2 36931 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → 𝜑)) |
3 | 1 | currysetlem1 36930 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
4 | 2, 3 | mpbird 257 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑋) |
5 | 1 | currysetlem2 36931 | . . . 4 ⊢ (𝑋 ∈ 𝑋 → (𝑋 ∈ 𝑋 → 𝜑)) |
6 | 5 | pm2.43i 52 | . . 3 ⊢ (𝑋 ∈ 𝑋 → 𝜑) |
7 | ax-1 6 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑥 → 𝜑)) | |
8 | 7 | alrimiv 1925 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝑥 → 𝜑)) |
9 | bj-abv 36889 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑥 → 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V) | |
10 | 1, 9 | eqtrid 2787 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑥 → 𝜑) → 𝑋 = V) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 = V) |
12 | nvel 5322 | . . . 4 ⊢ ¬ V ∈ 𝑉 | |
13 | eleq1 2827 | . . . 4 ⊢ (𝑋 = V → (𝑋 ∈ 𝑉 ↔ V ∈ 𝑉)) | |
14 | 12, 13 | mtbiri 327 | . . 3 ⊢ (𝑋 = V → ¬ 𝑋 ∈ 𝑉) |
15 | 4, 6, 11, 14 | 4syl 19 | . 2 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ 𝑉) |
16 | 15 | pm2.01i 189 | 1 ⊢ ¬ 𝑋 ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 |
This theorem is referenced by: currysetALT 36933 |
Copyright terms: Public domain | W3C validator |