Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetlem3 Structured version   Visualization version   GIF version

Theorem currysetlem3 36915
Description: Lemma for currysetALT 36916. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
Hypothesis
Ref Expression
currysetlem2.def 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
Assertion
Ref Expression
currysetlem3 ¬ 𝑋𝑉
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem currysetlem3
StepHypRef Expression
1 currysetlem2.def . . . . 5 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
21currysetlem2 36914 . . . 4 (𝑋𝑉 → (𝑋𝑋𝜑))
31currysetlem1 36913 . . . 4 (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
42, 3mpbird 257 . . 3 (𝑋𝑉𝑋𝑋)
51currysetlem2 36914 . . . 4 (𝑋𝑋 → (𝑋𝑋𝜑))
65pm2.43i 52 . . 3 (𝑋𝑋𝜑)
7 ax-1 6 . . . . 5 (𝜑 → (𝑥𝑥𝜑))
87alrimiv 1926 . . . 4 (𝜑 → ∀𝑥(𝑥𝑥𝜑))
9 bj-abv 36872 . . . . 5 (∀𝑥(𝑥𝑥𝜑) → {𝑥 ∣ (𝑥𝑥𝜑)} = V)
101, 9eqtrid 2792 . . . 4 (∀𝑥(𝑥𝑥𝜑) → 𝑋 = V)
118, 10syl 17 . . 3 (𝜑𝑋 = V)
12 nvel 5334 . . . 4 ¬ V ∈ 𝑉
13 eleq1 2832 . . . 4 (𝑋 = V → (𝑋𝑉 ↔ V ∈ 𝑉))
1412, 13mtbiri 327 . . 3 (𝑋 = V → ¬ 𝑋𝑉)
154, 6, 11, 144syl 19 . 2 (𝑋𝑉 → ¬ 𝑋𝑉)
1615pm2.01i 189 1 ¬ 𝑋𝑉
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by:  currysetALT  36916
  Copyright terms: Public domain W3C validator