Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbel1 Structured version   Visualization version   GIF version

Theorem bj-sbel1 36866
Description: Version of sbcel1g 4375 when substituting a set. (Note: one could have a corresponding version of sbcel12 4370 when substituting a set, but the point here is that the antecedent of sbcel1g 4375 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sbel1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem bj-sbel1
StepHypRef Expression
1 sbsbc 3754 . 2 ([𝑦 / 𝑥]𝐴𝐵[𝑦 / 𝑥]𝐴𝐵)
2 sbcel1g 4375 . . 3 (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵))
32elv 3449 . 2 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
41, 3bitri 275 1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2065  wcel 2109  Vcvv 3444  [wsbc 3750  csb 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-nul 4293
This theorem is referenced by:  bj-snsetex  36924
  Copyright terms: Public domain W3C validator