![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbel1 | Structured version Visualization version GIF version |
Description: Version of sbcel1g 4439 when substituting a set. (Note: one could have a corresponding version of sbcel12 4434 when substituting a set, but the point here is that the antecedent of sbcel1g 4439 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sbel1 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3808 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝐵) | |
2 | sbcel1g 4439 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵)) | |
3 | 2 | elv 3493 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
4 | 1, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: bj-snsetex 36921 |
Copyright terms: Public domain | W3C validator |