Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbel1 | Structured version Visualization version GIF version |
Description: Version of sbcel1g 4353 when substituting a set. (Note: one could have a corresponding version of sbcel12 4348 when substituting a set, but the point here is that the antecedent of sbcel1g 4353 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sbel1 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3724 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝐵) | |
2 | sbcel1g 4353 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵)) | |
3 | 2 | elv 3437 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2071 ∈ wcel 2110 Vcvv 3431 [wsbc 3720 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-nul 4263 |
This theorem is referenced by: bj-snsetex 35149 |
Copyright terms: Public domain | W3C validator |