Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbel1 | Structured version Visualization version GIF version |
Description: Version of sbcel1g 4360 when substituting a set. (Note: one could have a corresponding version of sbcel12 4355 when substituting a set, but the point here is that the antecedent of sbcel1g 4360 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sbel1 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3731 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝐵) | |
2 | sbcel1g 4360 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵)) | |
3 | 2 | elv 3447 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2066 ∈ wcel 2105 Vcvv 3441 [wsbc 3727 ⦋csb 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-nul 4270 |
This theorem is referenced by: bj-snsetex 35247 |
Copyright terms: Public domain | W3C validator |