| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbel1 | Structured version Visualization version GIF version | ||
| Description: Version of sbcel1g 4364 when substituting a set. (Note: one could have a corresponding version of sbcel12 4359 when substituting a set, but the point here is that the antecedent of sbcel1g 4364 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-sbel1 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3743 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝐵) | |
| 2 | sbcel1g 4364 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵)) | |
| 3 | 2 | elv 3439 | . 2 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2066 ∈ wcel 2110 Vcvv 3434 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-nul 4282 |
| This theorem is referenced by: bj-snsetex 36976 |
| Copyright terms: Public domain | W3C validator |