Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbel1 Structured version   Visualization version   GIF version

Theorem bj-sbel1 35069
Description: Version of sbcel1g 4352 when substituting a set. (Note: one could have a corresponding version of sbcel12 4347 when substituting a set, but the point here is that the antecedent of sbcel1g 4352 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sbel1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem bj-sbel1
StepHypRef Expression
1 sbsbc 3723 . 2 ([𝑦 / 𝑥]𝐴𝐵[𝑦 / 𝑥]𝐴𝐵)
2 sbcel1g 4352 . . 3 (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵))
32elv 3436 . 2 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
41, 3bitri 274 1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2070  wcel 2109  Vcvv 3430  [wsbc 3719  csb 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-nul 4262
This theorem is referenced by:  bj-snsetex  35132
  Copyright terms: Public domain W3C validator