Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbel1 Structured version   Visualization version   GIF version

Theorem bj-sbel1 34210
 Description: Version of sbcel1g 4363 when substituting a set. (Note: one could have a corresponding version of sbcel12 4358 when substituting a set, but the point here is that the antecedent of sbcel1g 4363 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sbel1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem bj-sbel1
StepHypRef Expression
1 sbsbc 3774 . 2 ([𝑦 / 𝑥]𝐴𝐵[𝑦 / 𝑥]𝐴𝐵)
2 sbcel1g 4363 . . 3 (𝑦 ∈ V → ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵))
32elv 3498 . 2 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
41, 3bitri 277 1 ([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208  [wsb 2062   ∈ wcel 2107  Vcvv 3493  [wsbc 3770  ⦋csb 3881 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-nul 4290 This theorem is referenced by:  bj-snsetex  34263
 Copyright terms: Public domain W3C validator