| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > curryset | Structured version Visualization version GIF version | ||
| Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is ⊥. See alternate exposal of basically the same proof currysetALT 36973. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| curryset | ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | currysetlem 36968 | . . . . . 6 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑))) | |
| 2 | 1 | ibi 267 | . . . . 5 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑)) |
| 3 | 2 | pm2.43i 52 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑) |
| 4 | currysetlem 36968 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑))) | |
| 5 | 3, 4 | mpbiri 258 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)}) |
| 6 | ax-1 6 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑥 → 𝜑)) | |
| 7 | 6 | alrimiv 1927 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝑥 → 𝜑)) |
| 8 | bj-abv 36929 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑥 → 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V) |
| 10 | nvel 5291 | . . . 4 ⊢ ¬ V ∈ 𝑉 | |
| 11 | eleq1 2823 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 ↔ V ∈ 𝑉)) | |
| 12 | 10, 11 | mtbiri 327 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V → ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉) |
| 13 | 5, 3, 9, 12 | 4syl 19 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉) |
| 14 | 13 | pm2.01i 189 | 1 ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |