Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curryset Structured version   Visualization version   GIF version

Theorem curryset 36912
Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is . See alternate exposal of basically the same proof currysetALT 36916. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
Assertion
Ref Expression
curryset ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem curryset
StepHypRef Expression
1 currysetlem 36911 . . . . . 6 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → 𝜑)))
21ibi 267 . . . . 5 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → 𝜑))
32pm2.43i 52 . . . 4 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → 𝜑)
4 currysetlem 36911 . . . 4 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉 → ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} → 𝜑)))
53, 4mpbiri 258 . . 3 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉 → {𝑥 ∣ (𝑥𝑥𝜑)} ∈ {𝑥 ∣ (𝑥𝑥𝜑)})
6 ax-1 6 . . . . 5 (𝜑 → (𝑥𝑥𝜑))
76alrimiv 1926 . . . 4 (𝜑 → ∀𝑥(𝑥𝑥𝜑))
8 bj-abv 36872 . . . 4 (∀𝑥(𝑥𝑥𝜑) → {𝑥 ∣ (𝑥𝑥𝜑)} = V)
97, 8syl 17 . . 3 (𝜑 → {𝑥 ∣ (𝑥𝑥𝜑)} = V)
10 nvel 5334 . . . 4 ¬ V ∈ 𝑉
11 eleq1 2832 . . . 4 ({𝑥 ∣ (𝑥𝑥𝜑)} = V → ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉 ↔ V ∈ 𝑉))
1210, 11mtbiri 327 . . 3 ({𝑥 ∣ (𝑥𝑥𝜑)} = V → ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉)
135, 3, 9, 124syl 19 . 2 ({𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉 → ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉)
1413pm2.01i 189 1 ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator