![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > curryset | Structured version Visualization version GIF version |
Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is ⊥. See alternate exposal of basically the same proof currysetALT 36657. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
curryset | ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | currysetlem 36652 | . . . . . 6 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑))) | |
2 | 1 | ibi 266 | . . . . 5 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑)) |
3 | 2 | pm2.43i 52 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑) |
4 | currysetlem 36652 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} → 𝜑))) | |
5 | 3, 4 | mpbiri 257 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)}) |
6 | ax-1 6 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑥 → 𝜑)) | |
7 | 6 | alrimiv 1923 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝑥 → 𝜑)) |
8 | bj-abv 36612 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑥 → 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V) |
10 | nvel 5321 | . . . 4 ⊢ ¬ V ∈ 𝑉 | |
11 | eleq1 2814 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V → ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 ↔ V ∈ 𝑉)) | |
12 | 10, 11 | mtbiri 326 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = V → ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉) |
13 | 5, 3, 9, 12 | 4syl 19 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 → ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉) |
14 | 13 | bj-pm2.01i 36266 | 1 ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1532 = wceq 1534 ∈ wcel 2099 {cab 2703 Vcvv 3462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-v 3464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |