Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axadj Structured version   Visualization version   GIF version

Theorem bj-axadj 36225
Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 36226). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axadj ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Distinct variable groups:   𝑥,𝑧,𝑡   𝑦,𝑧,𝑡

Proof of Theorem bj-axadj
StepHypRef Expression
1 elun 4148 . . 3 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 ∈ {𝑦}))
2 velsn 4644 . . . 4 (𝑡 ∈ {𝑦} ↔ 𝑡 = 𝑦)
32orbi2i 911 . . 3 ((𝑡𝑥𝑡 ∈ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
41, 3bitri 274 . 2 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
54bj-clex 36215 1 ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845  wal 1539  wex 1781  wcel 2106  Vcvv 3474  cun 3946  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-sn 4629
This theorem is referenced by:  bj-adjg1  36227
  Copyright terms: Public domain W3C validator