Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axadj Structured version   Visualization version   GIF version

Theorem bj-axadj 37083
Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37084). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axadj ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Distinct variable groups:   𝑥,𝑧,𝑡   𝑦,𝑧,𝑡

Proof of Theorem bj-axadj
StepHypRef Expression
1 elun 4100 . . 3 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 ∈ {𝑦}))
2 velsn 4589 . . . 4 (𝑡 ∈ {𝑦} ↔ 𝑡 = 𝑦)
32orbi2i 912 . . 3 ((𝑡𝑥𝑡 ∈ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
41, 3bitri 275 . 2 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
54bj-clex 37073 1 ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1539  wex 1780  wcel 2111  Vcvv 3436  cun 3895  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574
This theorem is referenced by:  bj-adjg1  37085
  Copyright terms: Public domain W3C validator