Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axadj Structured version   Visualization version   GIF version

Theorem bj-axadj 37007
Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37008). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axadj ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Distinct variable groups:   𝑥,𝑧,𝑡   𝑦,𝑧,𝑡

Proof of Theorem bj-axadj
StepHypRef Expression
1 elun 4176 . . 3 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 ∈ {𝑦}))
2 velsn 4664 . . . 4 (𝑡 ∈ {𝑦} ↔ 𝑡 = 𝑦)
32orbi2i 911 . . 3 ((𝑡𝑥𝑡 ∈ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
41, 3bitri 275 . 2 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
54bj-clex 36997 1 ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846  wal 1535  wex 1777  wcel 2108  Vcvv 3488  cun 3974  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649
This theorem is referenced by:  bj-adjg1  37009
  Copyright terms: Public domain W3C validator