| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axadj | Structured version Visualization version GIF version | ||
| Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37065). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axadj | ⊢ ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4133 | . . 3 ⊢ (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ {𝑦})) | |
| 2 | velsn 4622 | . . . 4 ⊢ (𝑡 ∈ {𝑦} ↔ 𝑡 = 𝑦) | |
| 3 | 2 | orbi2i 912 | . . 3 ⊢ ((𝑡 ∈ 𝑥 ∨ 𝑡 ∈ {𝑦}) ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) |
| 5 | 4 | bj-clex 37054 | 1 ⊢ ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 |
| This theorem is referenced by: bj-adjg1 37066 |
| Copyright terms: Public domain | W3C validator |