Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axadj Structured version   Visualization version   GIF version

Theorem bj-axadj 37036
Description: Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37037). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axadj ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Distinct variable groups:   𝑥,𝑧,𝑡   𝑦,𝑧,𝑡

Proof of Theorem bj-axadj
StepHypRef Expression
1 elun 4119 . . 3 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 ∈ {𝑦}))
2 velsn 4608 . . . 4 (𝑡 ∈ {𝑦} ↔ 𝑡 = 𝑦)
32orbi2i 912 . . 3 ((𝑡𝑥𝑡 ∈ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
41, 3bitri 275 . 2 (𝑡 ∈ (𝑥 ∪ {𝑦}) ↔ (𝑡𝑥𝑡 = 𝑦))
54bj-clex 37026 1 ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1538  wex 1779  wcel 2109  Vcvv 3450  cun 3915  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593
This theorem is referenced by:  bj-adjg1  37038
  Copyright terms: Public domain W3C validator