![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-adjg1 | Structured version Visualization version GIF version |
Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-adjg1 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4156 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∪ {𝑥}) = (𝐴 ∪ {𝑥})) | |
2 | 1 | eleq1d 2817 | . 2 ⊢ (𝑦 = 𝐴 → ((𝑦 ∪ {𝑥}) ∈ V ↔ (𝐴 ∪ {𝑥}) ∈ V)) |
3 | ax-bj-adj 36227 | . . . . 5 ⊢ ∀𝑦∀𝑥∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) | |
4 | 3 | spi 2176 | . . . 4 ⊢ ∀𝑥∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) |
5 | 4 | spi 2176 | . . 3 ⊢ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) |
6 | bj-axadj 36226 | . . 3 ⊢ ((𝑦 ∪ {𝑥}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥))) | |
7 | 5, 6 | mpbir 230 | . 2 ⊢ (𝑦 ∪ {𝑥}) ∈ V |
8 | 2, 7 | vtoclg 3542 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 ax-bj-adj 36227 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 |
This theorem is referenced by: bj-snfromadj 36229 bj-prfromadj 36230 |
Copyright terms: Public domain | W3C validator |