Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-adjg1 Structured version   Visualization version   GIF version

Theorem bj-adjg1 37009
Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-adjg1 (𝐴𝑉 → (𝐴 ∪ {𝑥}) ∈ V)

Proof of Theorem bj-adjg1
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4184 . . 3 (𝑦 = 𝐴 → (𝑦 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
21eleq1d 2829 . 2 (𝑦 = 𝐴 → ((𝑦 ∪ {𝑥}) ∈ V ↔ (𝐴 ∪ {𝑥}) ∈ V))
3 ax-bj-adj 37008 . . . . 5 𝑦𝑥𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
43spi 2185 . . . 4 𝑥𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
54spi 2185 . . 3 𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
6 bj-axadj 37007 . . 3 ((𝑦 ∪ {𝑥}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥)))
75, 6mpbir 231 . 2 (𝑦 ∪ {𝑥}) ∈ V
82, 7vtoclg 3566 1 (𝐴𝑉 → (𝐴 ∪ {𝑥}) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 846  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cun 3974  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-bj-adj 37008
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649
This theorem is referenced by:  bj-snfromadj  37010  bj-prfromadj  37011
  Copyright terms: Public domain W3C validator