Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-adjg1 Structured version   Visualization version   GIF version

Theorem bj-adjg1 36228
Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-adjg1 (𝐴𝑉 → (𝐴 ∪ {𝑥}) ∈ V)

Proof of Theorem bj-adjg1
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4156 . . 3 (𝑦 = 𝐴 → (𝑦 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
21eleq1d 2817 . 2 (𝑦 = 𝐴 → ((𝑦 ∪ {𝑥}) ∈ V ↔ (𝐴 ∪ {𝑥}) ∈ V))
3 ax-bj-adj 36227 . . . . 5 𝑦𝑥𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
43spi 2176 . . . 4 𝑥𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
54spi 2176 . . 3 𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥))
6 bj-axadj 36226 . . 3 ((𝑦 ∪ {𝑥}) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑦𝑡 = 𝑥)))
75, 6mpbir 230 . 2 (𝑦 ∪ {𝑥}) ∈ V
82, 7vtoclg 3542 1 (𝐴𝑉 → (𝐴 ∪ {𝑥}) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  wal 1538   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473  cun 3946  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2702  ax-bj-adj 36227
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-sn 4629
This theorem is referenced by:  bj-snfromadj  36229  bj-prfromadj  36230
  Copyright terms: Public domain W3C validator