![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-adjg1 | Structured version Visualization version GIF version |
Description: Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-adjg1 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4184 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∪ {𝑥}) = (𝐴 ∪ {𝑥})) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑦 = 𝐴 → ((𝑦 ∪ {𝑥}) ∈ V ↔ (𝐴 ∪ {𝑥}) ∈ V)) |
3 | ax-bj-adj 37008 | . . . . 5 ⊢ ∀𝑦∀𝑥∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) | |
4 | 3 | spi 2185 | . . . 4 ⊢ ∀𝑥∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) |
5 | 4 | spi 2185 | . . 3 ⊢ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥)) |
6 | bj-axadj 37007 | . . 3 ⊢ ((𝑦 ∪ {𝑥}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑦 ∨ 𝑡 = 𝑥))) | |
7 | 5, 6 | mpbir 231 | . 2 ⊢ (𝑦 ∪ {𝑥}) ∈ V |
8 | 2, 7 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-bj-adj 37008 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 |
This theorem is referenced by: bj-snfromadj 37010 bj-prfromadj 37011 |
Copyright terms: Public domain | W3C validator |